期刊论文详细信息
Irish Veterinary Journal
Phylogenetic grouping, epidemiological typing, analysis of virulence genes, and antimicrobial susceptibility of Escherichia coli isolated from healthy broilers in Japan
Tetsuo Asai3  Akemi Kojima2  Hideto Sekiguchi4  Saiki Imamura4  Mai Tsuyuki4  Michiko Kawanishi2  Tetsuo Akiyama2  Masaru Usui1  Mototaka Hiki2 
[1] Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan;National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan;The United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan;Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries, 1-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8950, Japan
关键词: Antimicrobial resistance;    Virulence-associated gene;    Phylogenetic grouping;    Multi-locus sequence typing;    Escherichia coli;    Broiler;   
Others  :  1135902
DOI  :  10.1186/2046-0481-67-14
 received in 2014-02-27, accepted in 2014-06-20,  发布年份 2014
PDF
【 摘 要 】

Background

The aim of our study was to investigate the possible etiology of avian colibacillosis by examining Escherichia coli isolates from fecal samples of healthy broilers.

Findings

Seventy-eight E. coli isolates from fecal samples of healthy broilers in Japan were subjected to analysis of phylogenetic background, virulence-associated gene profiling, multi-locus sequence typing (MLST), and antimicrobial resistance profiling. Phylogenetic analysis demonstrated that 35 of the 78 isolates belonged to group A, 28 to group B1, one to group B2, and 14 to group D. Virulence-associated genes iutA, iss, cvaC, tsh, iroN, ompT, and hlyF were found in 23 isolates (29.5%), 16 isolates (20.5%), nine isolates (11.5%), five isolates (6.4%), 19 isolates (24.4%), 23 isolates (29.5%), and 22 isolates (28.2%) respectively. Although the genetic diversity of group D isolates was revealed by MLST, the group D isolates harbored iutA (10 isolates, 71.4%), iss (6 isolates, 42.9%), cvaC (5 isolates, 35.7%), tsh (3 isolates, 21.4%), hlyF (9 isolates, 64.3%), iroN (7 isolates, 50.0%), and ompT (9 isolates, 64.3%).

Conclusions

Our results indicated that E. coli isolates inhabiting the intestines of healthy broilers pose a potential risk of causing avian colibacillosis.

【 授权许可】

   
2014 Hiki et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150311091609445.pdf 170KB PDF download
【 参考文献 】
  • [1]Dziva F, Stevens MP: Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathol 2008, 37:355-366.
  • [2]Clermont O, Bonacorsi S, Bingen E: Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000, 66:4555-4558.
  • [3]Asai T, Masani K, Sato C, Hiki M, Usui M, Baba K, Ozawa M, Harada K, Aoki H, Sawada T: Phylogenetic groups and cephalosporin resistance genes of Escherichia coli from diseased food-producing animals in Japan. Acta Vet Scand 2011, 53:52. BioMed Central Full Text
  • [4]Johnson TJ, Wannemuehler Y, Johnson SJ, Stell AL, Doetkott C, Johnson JR, Kim KS, Spanjaard L, Nolan LK: Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl Environ Microbiol 2008, 74:7043-7050.
  • [5]Jakobsen L, Kurbasic A, Skjot-Rasmussen L, Ejrnaes K, Porsbo LJ, Pedersen K, Jensen LB, Emborg HD, Agerso Y, Olsen KE, Aarestrup FM, Frimodt-Moller N, Hammerum AM: Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog Dis 2010, 7:537-547.
  • [6]Johnson TJ, Wannemuehler Y, Doetkott C, Johnson SJ, Rosenberger SC, Nolan LK: Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J Clin Microbiol 2008, 46:3987-3996.
  • [7]Dho-Moulin M, Fairbrother JM: Avian pathogenic Escherichia coli (APEC). Vet Res 1999, 30:299-316.
  • [8]Delicato ER, de Brito BG, Gaziri LC, Vidotto MC: Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis. Vet Microbiol 2003, 94:97-103.
  • [9]Ozawa M, Baba K, Asai T: Molecular typing of avian pathogenic Escherichia coli O78 strains in Japan by using multilocus sequence typing and pulsed-field gel electrophoresis. J Vet Med Sci 2010, 72:1517-1520.
  • [10]Ozawa M, Harada K, Kojima A, Asai T, Sameshima T: Antimicrobial susceptibilities, serogroups, and molecular characterization of avian pathogenic Escherichia coli isolates in Japan. Avian Dis 2008, 52:392-397.
  • [11]Bukh AS, Schonheyder HC, Emmersen JM, Sogaard M, Bastholm S, Roslev P: Escherichia coli phylogenetic groups are associated with site of infection and level of antibiotic resistance in community-acquired bacteraemia: a 10 year population-based study in Denmark. J Antimicrob Chemother 2009, 64:163-168.
  • [12]Graziani C, Luzzi I, Corro M, Tomei F, Parisi G, Giufre M, Morabito S, Caprioli A, Cerquetti M: Phylogenetic background and virulence genotype of ciprofloxacin-susceptible and ciprofloxacin-resistant Escherichia coli strains of human and avian origin. J Infect Dis 2009, 199:1209-1217.
  • [13]Kawamura-Sato K, Yoshida R, Shibayama K, Ohta M: Virulence genes, quinolone and fluoroquinolone resistance, and phylogenetic background of uropathogenic Escherichia coli strains isolated in Japan. Jpn J Infect Dis 2010, 63:113-115.
  • [14]Hiki M, Usui M, Kojima A, Ozawa M, Ishii Y, Asai T: Diversity of plasmid replicons encoding the bla (CMY-2) gene in broad-spectrum cephalosporin-resistant Escherichia coli from livestock animals in Japan. Foodborne Pathog Dis 2013, 10:243-249.
  • [15]Moulin-Schouleur M, Reperant M, Laurent S, Bree A, Mignon-Grasteau S, Germon P, Rasschaert D, Schouler C: Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J Clin Microbiol 2007, 45:3366-3376.
  • [16]Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, Achtman M: Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006, 60:1136-1151.
  • [17]CLSI: Clinical and Laboratory Standards Institute. 2013. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals; Approved standard–Fourth edition and supplement. Wayne, PA: CLSI document VET01-A4 and VET01-S2; 2013.
  • [18]Kojima A, Asai T, Ishihara K, Morioka A, Akimoto K, Sugimoto Y, Sato T, Tamura Y, Takahashi T: National monitoring for antimicrobial resistance among indicator bacteria isolated from food-producing animals in Japan. J Vet Med Sci 2009, 71:1301-1308.
  • [19]Martinez-Medina M, Garcia-Gil J, Barnich N, Wieler LH, Ewers C: Adherent-invasive Escherichia coli phenotype displayed by intestinal pathogenic E. coli strains from cats, dogs, and swine. Appl Environ Microbiol 2011, 77:5813-5817.
  文献评价指标  
  下载次数:4次 浏览次数:7次