期刊论文详细信息
Journal of Cardiovascular Magnetic Resonance
Cardiac steatosis and left ventricular function in men with metabolic syndrome
Kirsi Lauerma1  Nina Lundbom2  Marja-Riitta Taskinen3  Markku S Nieminen3  Reijo Sirén4  Antti Hakkarainen2  Jesper Lundbom2  Markku O Pentikäinen3  Marit Granér3  Kristofer Nyman2 
[1] Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, Stenbäckinkatu 11, BOX 281, Helsinki FI-00029 HUS, Finland;Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, Haartmaninkatu 4, BOX 340, FI-00029 HUS, Finland;Heart and Lung Center, Division of Cardiology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland;Department of General Practice and Primary Health Care, Health Care Centre of City of Helsinki and University of Helsinki, Helsinki, Finland
关键词: Cardiac steatosis;    Pericardial fat;    Epicardial fat;    Myocardial triglyceride content;    Diastolic dysfunction;    Obesity;    Metabolic syndrome;    Proton magnetic resonance spectroscopy;    Cardiovascular magnetic resonance;   
Others  :  802128
DOI  :  10.1186/1532-429X-15-103
 received in 2013-05-22, accepted in 2013-11-05,  发布年份 2013
PDF
【 摘 要 】

Background

Ectopic accumulation of fat accompanies visceral obesity with detrimental effects. Lipid oversupply to cardiomyocytes leads to cardiac steatosis, and in animal studies lipotoxicity has been associated with impaired left ventricular (LV) function. In humans, studies have yielded inconclusive results. The aim of the study was to evaluate the role of epicardial, pericardial and myocardial fat depots on LV structure and function in male subjects with metabolic syndrome (MetS).

Methods

A study population of 37 men with MetS and 38 men without MetS underwent cardiovascular magnetic resonance and proton magnetic spectroscopy at 1.5 T to assess LV function, epicardial and pericardial fat area and myocardial triglyceride (TG) content.

Results

All three fat deposits were greater in the MetS than in the control group (p <0.001). LV diastolic dysfunction was associated with MetS as measured by absolute (471 mL/s vs. 667 mL/s, p = 0.002) and normalized (3.37 s-1 vs. 3.75 s-1, p = 0.02) LV early diastolic peak filling rate and the ratio of early diastole (68% vs. 78%, p = 0.001). The amount of epicardial and pericardial fat correlated inversely with LV diastolic function. However, myocardial TG content was not independently associated with LV diastolic dysfunction.

Conclusions

In MetS, accumulation of epicardial and pericardial fat is linked to the severity of structural and functional alterations of the heart. The role of increased intramyocardial TG in MetS is more complex and merits further study.

【 授权许可】

   
2013 Nyman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708015635123.pdf 1032KB PDF download
Figure 4. 56KB Image download
Figure 3. 41KB Image download
Figure 2. 65KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Cornier MA, Despres JP, Davis N, Grossniklaus DA, Klein S, Lamarche B, Lopez-Jimenez F, Rao G, St-Onge MP, Towfighi A, Poirier P. American heart association obesity committee of the council on nutrition, physical activity and metabolism, council on arteriosclerosis, thrombosis and vascular biology, council on cardiovascular disease in the young, council on cardiovascular radiology and intervention, council on cardiovascular nursing, council on epidemiology and prevention, council on the kidney in cardiovascular disease, and stroke council: assessing adiposity: a scientific statement from the american heart association. Circulation. 2011; 124(18):1996-2019.
  • [2]Despres JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012; 126(10):1301-13.
  • [3]Britton KA, Fox CS. Ectopic fat depots and cardiovascular disease. Circulation. 2011; 124(24):e837-41.
  • [4]Iozzo P. Myocardial, perivascular, and epicardial fat. Diabetes Care. 2011; 34 Suppl 2:S371-9.
  • [5]Reingold JS, McGavock JM, Kaka S, Tillery T, Victor RG, Szczepaniak LS. Determination of triglyceride in the human myocardium by magnetic resonance spectroscopy: reproducibility and sensitivity of the method. Am J Physiol Endocrinol Metab. 2005; 289(5):E935-9.
  • [6]Kankaanpaa M, Lehto HR, Parkka JP, Komu M, Viljanen A, Ferrannini E, Knuuti J, Nuutila P, Parkkola R, Iozzo P. Myocardial triglyceride content and epicardial fat mass in human obesity: relationship to left ventricular function and serum free fatty acid levels. J Clin Endocrinol Metab. 2006; 91(11):4689-95.
  • [7]Iozzo P, Lautamaki R, Borra R, Lehto HR, Bucci M, Viljanen A, Parkka J, Lepomaki V, Maggio R, Parkkola R, Knuuti J, Nuutila P. Contribution of glucose tolerance and gender to cardiac adiposity. J Clin Endocrinol Metab. 2009; 94(11):4472-82.
  • [8]McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, Levine BD, Raskin P, Victor RG, Szczepaniak LS. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007; 116(10):1170-5.
  • [9]Wende AR, Abel ED. Lipotoxicity in the heart. Biochim Biophys Acta. 2010; 1801(3):311-9.
  • [10]Rijzewijk LJ, van der Meer RW, Smit JW, Diamant M, Bax JJ, Hammer S, Romijn JA, de Roos A, Lamb HJ. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol. 2008; 52(22):1793-9.
  • [11]Korosoglou G, Humpert PM, Ahrens J, Oikonomou D, Osman NF, Gitsioudis G, Buss SJ, Steen H, Schnackenburg B, Bierhaus A, Nawroth PP, Katus HA. Left ventricular diastolic function in type 2 diabetes mellitus is associated with myocardial triglyceride content but not with impaired myocardial perfusion reserve. J Magn Reson Imaging. 2012; 35(4):804-11.
  • [12]Masugata H, Senda S, Goda F, Yoshihara Y, Yoshikawa K, Fujita N, Daikuhara H, Nakamura H, Taoka T, Kohno M. Left ventricular diastolic dysfunction as assessed by echocardiography in metabolic syndrome. Hypertens Res. 2006; 29(11):897-903.
  • [13]Orhan AL, Uslu N, Dayi SU, Nurkalem Z, Uzun F, Erer HB, Hasdemir H, Emre A, Karakus G, Soran O, Gorcsan J, Eren M. Effects of isolated obesity on left and right ventricular function: a tissue Doppler and strain rate imaging study. Echocardiography. 2010; 27(3):236-43.
  • [14]Rider OJ, Francis JM, Ali MK, Holloway C, Pegg T, Robson MD, Tyler D, Byrne J, Clarke K, Neubauer S. Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation. 2012; 125(12):1511-9.
  • [15]Utz W, Engeli S, Haufe S, Kast P, Hermsdorf M, Wiesner S, Pofahl M, Traber J, Luft FC, Boschmann M, Schulz-Menger J, Jordan J. Myocardial steatosis, cardiac remodelling and fitness in insulin-sensitive and insulin-resistant obese women. Heart. 2011; 97(19):1585-9.
  • [16]Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC. International diabetes federation task force on epidemiology and prevention, hational heart, lung, and blood institute, American heart association, world heart federation, international atherosclerosis society, international association for the study of obesity: harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009; 120(16):1640-5.
  • [17]Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18(6):499-502.
  • [18]Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004; 27(6):1487-95.
  • [19]Mewton N, Opdahl A, Choi EY, Almeida AL, Kawel N, Wu CO, Burke GL, Liu S, Liu K, Bluemke DA, Lima JA. Left ventricular global function index by magnetic resonance imaging--a novel marker for assessment of cardiac performance for the prediction of cardiovascular events: the multi-ethnic study of atherosclerosis. Hypertension. 2013; 61(4):770-8.
  • [20]Westenberg JJ. CMR for assessment of diastolic function. Curr Cardiovasc Imaging Rep. 2011; 4(2):149-58.
  • [21]Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med. 2001; 31(4):269-86.
  • [22]Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997; 129(1):35-43.
  • [23]Graner M, Siren R, Nyman K, Lundbom J, Hakkarainen A, Pentikainen MO, Lauerma K, Lundbom N, Adiels M, Nieminen MS, Taskinen MR. Cardiac steatosis associates with visceral obesity in nondiabetic obese men. J Clin Endocrinol Metab. 2013; 98(3):1189-97.
  • [24]Mandry D, Eschalier R, Kearney-Schwartz A, Rossignol P, Joly L, Djaballah W, Bohme P, Escanye JM, Vuissoz PA, Fay R, Zannad F, Marie PY. Comprehensive MRI analysis of early cardiac and vascular remodeling in middle-aged patients with abdominal obesity. J Hypertens. 2012; 30(3):567-73.
  • [25]Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, O’Donnell CJ, Fox CS. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008; 117(5):605-13.
  • [26]Tamarappoo B, Dey D, Shmilovich H, Nakazato R, Gransar H, Cheng VY, Friedman JD, Hayes SW, Thomson LE, Slomka PJ, Rozanski A, Berman DS. Increased pericardial fat volume measured from noncontrast CT predicts myocardial ischemia by SPECT. JACC Cardiovasc Imaging. 2010; 3(11):1104-12.
  • [27]Cavalcante JL, Tamarappoo BK, Hachamovitch R, Kwon DH, Alraies MC, Halliburton S, Schoenhagen P, Dey D, Berman DS, Marwick TH. Association of epicardial fat, hypertension, subclinical coronary artery disease, and metabolic syndrome with left ventricular diastolic dysfunction. Am J Cardiol. 2012; 110(12):1793-8.
  • [28]Marchington JM, Pond CM. Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes. 1990; 14(12):1013-22.
  • [29]Sacks HS, Fain JN. Human epicardial fat: what is new and what is missing? Clin Exp Pharmacol Physiol. 2011; 38(12):879-87.
  • [30]Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007; 153(6):907-17.
  • [31]Sironi AM, Petz R, De Marchi D, Buzzigoli E, Ciociaro D, Positano V, Lombardi M, Ferrannini E, Gastaldelli A. Impact of increased visceral and cardiac fat on cardiometabolic risk and disease. Diabet Med. 2012; 29(5):622-7.
  • [32]Krssak M, Winhofer Y, Gobl C, Bischof M, Reiter G, Kautzky-Willer A, Luger A, Krebs M, Anderwald C. Insulin resistance is not associated with myocardial steatosis in women. Diabetologia. 2011; 54(7):1871-8.
  • [33]Hammer S, Snel M, Lamb HJ, Jazet IM, van der Meer RW, Pijl H, Meinders EA, Romijn JA, de Roos A, Smit JW. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol. 2008; 52(12):1006-12.
  • [34]van Loon LJ, Goodpaster BH. Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pflugers Arch. 2006; 451(5):606-16.
  • [35]Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012; 15(6):805-12.
  • [36]Lopaschuk GD, Folmes CD, Stanley WC. Cardiac energy metabolism in obesity. Circ Res. 2007; 101(4):335-47.
  文献评价指标  
  下载次数:155次 浏览次数:52次