Clinical Epigenetics | |
Synthetic epigenetics—towards intelligent control of epigenetic states and cell identity | |
Peter Stepper1  Mirunalini Ravichandran1  Tomasz P Jurkowski1  | |
[1] Laboratory of Molecular Epigenetics, Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, D-70569, Germany | |
关键词: Epigenetic editing; Epigenetics; Cell fate; CRISPR; TALE; Zinc fingers; Targeted epigenome modification; Synthetic epigenetics; | |
Others : 1147913 DOI : 10.1186/s13148-015-0044-x |
|
received in 2014-09-08, accepted in 2015-01-12, 发布年份 2015 | |
【 摘 要 】
Epigenetics is currently one of the hottest topics in basic and biomedical research. However, to date, most of the studies have been descriptive in nature, designed to investigate static distribution of various epigenetic modifications in cells. Even though tremendous amount of information has been collected, we are still far from the complete understanding of epigenetic processes, their dynamics or even their direct effects on local chromatin and we still do not comprehend whether these epigenetic states are the cause or the consequence of the transcriptional profile of the cell. In this review, we try to define the concept of synthetic epigenetics and outline the available genome targeting technologies, which are used for locus-specific editing of epigenetic signals. We report early success stories and the lessons we have learned from them, and provide a guide for their application. Finally, we discuss existing limitations of the available technologies and indicate possible areas for further development.
【 授权许可】
2015 Jurkowski et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150404063720574.pdf | 1851KB | download | |
Figure 2. | 58KB | Image | download |
Figure 1. | 16KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Gurdon J: Nuclear reprogramming in eggs. Nat Med 2009, 15(10):1141-4.
- [2]Waddington CH: The strategy of the genes; a discussion of some aspects of theoretical biology. Allen & Unwin, London; 1957.
- [3]Consortium EP: The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004, 306(5696):636-40.
- [4]Consortium EP: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489(7414):57-74.
- [5]Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al.: The NIH roadmap epigenomics mapping consortium. Nat Biotechnol 2010, 28(10):1045-8.
- [6]Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, et al.: BLUEPRINT to decode the epigenetic signature written in blood. Nat Biotechnol 2012, 30(3):224-6.
- [7]Rodriguez-Paredes M, Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med 2011, 17(3):330-9.
- [8]Egger G, Liang G, Aparicio A, Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004, 429(6990):457-63.
- [9]Gurdon JB, Elsdale TR, Fischberg M: Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 1958, 182(4627):64-5.
- [10]Gurdon JB: Adult frogs derived from the nuclei of single somatic cells. Dev Biol 1962, 4:256-73.
- [11]Graf T: Historical origins of transdifferentiation and reprogramming. Cell Stem Cell 2011, 9(6):504-16.
- [12]Davis RL, Weintraub H, Lassar AB: Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987, 51(6):987-1000.
- [13]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126(4):663-76.
- [14]Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131(5):861-72.
- [15]de Groote ML, Verschure PJ, Rots MG: Epigenetic editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 2012, 40(21):10596-613.
- [16]Bauman J, Verschraegen C, Belinsky S, Muller C, Rutledge T, Fekrazad M, et al.: A phase I study of 5-azacytidine and erlotinib in advanced solid tumor malignancies. Cancer Chemother Pharmacol 2012, 69(2):547-54.
- [17]Yang G, Tian J, Feng C, Zhao LL, Liu Z, Zhu J: Trichostatin a promotes cardiomyocyte differentiation of rat mesenchymal stem cells after 5-azacytidine induction or during coculture with neonatal cardiomyocytes via a mechanism independent of histone deacetylase inhibition. Cell Transplant 2012, 21(5):985-96.
- [18]Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al.: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122(6):947-56.
- [19]Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, et al.: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008, 134(3):521-33.
- [20]Maza I, Hanna JH: Hijacked by an oocyte: hierarchical molecular changes in somatic cell nuclear transfer. Mol Cell 2014, 55(4):507-9.
- [21]Liang G, Zhang Y: Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res 2013, 23(1):49-69.
- [22]Jullien J, Miyamoto K, Pasque V, Allen GE, Bradshaw CR, Garrett NJ, et al.: Hierarchical molecular events driven by oocyte-specific factors lead to rapid and extensive reprogramming. Mol Cell 2014, 55(4):524-36.
- [23]Gao Y, Chen J, Li K, Wu T, Huang B, Liu W, et al.: Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 2013, 12(4):453-69.
- [24]Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, et al.: Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011, 471(7336):68-73.
- [25]Simonsson S, Gurdon J: DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol 2004, 6(10):984-90.
- [26]Ooi J, Liu P: Pluripotency and its layers of complexity. Cell Regen 2012, 1(1):7.
- [27]Krishnakumar R, Blelloch RH: Epigenetics of cellular reprogramming. Curr Opin Genet Dev 2013, 23(5):548-55.
- [28]Fulka J Jr, Langerova A, Loi P, Ptak G, Albertini D, Fulka H: The ups and downs of somatic cell nucleus transfer (SCNT) in humans. J Assist Reprod Genet 2013, 30(8):1055-8.
- [29]Maherali N, Hochedlinger K: Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 2008, 3(6):595-605.
- [30]Ogura A, Inoue K, Wakayama T: Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc Lond Ser B Biol Sci 2013, 368(1609):20110329.
- [31]Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, et al.: Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 2014, 538(2):217-27.
- [32]Lund CV, Blancafort P, Popkov M, Barbas CF 3rd: Promoter-targeted phage display selections with preassembled synthetic zinc finger libraries for endogenous gene regulation. J Mol Biol 2004, 340(3):599-613.
- [33]Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, et al.: Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 2014, 32(7):670-6.
- [34]Rivenbark AG, Stolzenburg S, Beltran AS, Yuan X, Rots MG, Strahl BD, et al.: Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 2012, 7(4):350-60.
- [35]Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al.: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154(2):442-51.
- [36]Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK: CRISPR RNA-guided activation of endogenous human genes. Nat Methods 2013, 10(10):977-9.
- [37]Nunna S, Reinhardt R, Ragozin S, Jeltsch A: Targeted methylation of the epithelial cell adhesion molecule (EpCAM) promoter to silence its expression in ovarian cancer cells. PLoS One 2014, 9(1):e87703.
- [38]Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, et al.: Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 2013, 425(3):479-91.
- [39]Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, et al.: Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res 2012, 40(14):6725-40.
- [40]Thirlwell C, Schulz L, Dibra H, Beck S: Suffocating cancer: hypoxia-associated epimutations as targets for cancer therapy. Clin Epigenetics 2011, 3:9.
- [41]Tapia T, Smalley SV, Kohen P, Munoz A, Solis LM, Corvalan A, et al.: Promoter hypermethylation of BRCA1 correlates with absence of expression in hereditary breast cancer tumors. Epigenetics 2008, 3(3):157-63.
- [42]Tee L, Lim DH, Dias RP, Baudement MO, Slater AA, Kirby G, et al.: Epimutation profiling in Beckwith-Wiedemann syndrome: relationship with assisted reproductive technology. Clin Epigenetics 2013, 5(1):23.
- [43]Ibrahim A, Kirby G, Hardy C, Dias RP, Tee L, Lim D, et al.: Methylation analysis and diagnostics of Beckwith-Wiedemann syndrome in 1,000 subjects. Clin Epigenetics 2014, 6(1):11.
- [44]Weksberg R, Smith AC, Squire J, Sadowski P: Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum Mol Genet 2003, 12 Spec No 1:R61-8.
- [45]Dwivedi RS, Herman JG, McCaffrey TA, Raj DS: Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int 2011, 79(1):23-32.
- [46]Begin P, Nadeau KC: Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin Immunol 2014, 10(1):27.
- [47]Dayeh T, Volkov P, Salo S, Hall E, Nilsson E, Olsson AH, et al.: Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 2014, 10(3):e1004160.
- [48]Wang Y, Shu Y, Xiao Y, Wang Q, Kanekura T, Li Y, et al.: Hypomethylation and overexpression of ITGAL (CD11a) in CD4 T cells in systemic sclerosis. Clin Epigenetics 2014, 6(1):25.
- [49]Jurkowska RZ, Jeltsch A: Silencing of gene expression by targeted DNA methylation: concepts and approaches. Methods Mol Biol 2010, 649:149-61.
- [50]Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, et al.: Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 2014, 11(4):429-35.
- [51]Jeltsch A, Jurkowska RZ, Jurkowski TP, Liebert K, Rathert P, Schlickenrieder M: Application of DNA methyltransferases in targeted DNA methylation. Appl Microbiol Biotechnol 2007, 75(6):1233-40.
- [52]Blancafort P, Jin J, Frye S: Writing and rewriting the epigenetic code of cancer cells: from engineered proteins to small molecules. Mol Pharmacol 2013, 83(3):563-76.
- [53]Voigt P, Reinberg D: Epigenome editing. Nat Biotechnol 2013, 31(12):1097-9.
- [54]Rusk N: CRISPRs and epigenome editing. Nat Methods 2014, 11(1):28.
- [55]Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordan R, Rohs R: Absence of a simple code: how transcription factors read the genome. Trends Biochem Sci 2014, 39(9):381-99.
- [56]Suzuki M: A framework for the DNA-protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules. Structure 1994, 2(4):317-26.
- [57]Pingoud A, Jeltsch A: Structure and function of type II restriction endonucleases. Nucleic Acids Res 2001, 29(18):3705-27.
- [58]Wolfe SA, Nekludova L, Pabo CO: DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 2000, 29:183-212.
- [59]Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al.: Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009, 326(5959):1509-12.
- [60]Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337(6096):816-21.
- [61]Pabo CO, Peisach E, Grant RA: Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 2001, 70:313-40.
- [62]Laity JH, Lee BM, Wright PE: Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 2001, 11(1):39-46.
- [63]Choo Y, Klug A: Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci U S A 1994, 91(23):11163-7.
- [64]Fu F, Sander JD, Maeder M, Thibodeau-Beganny S, Joung JK, Dobbs D, et al.: Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays. Nucleic Acids Res 2009, 37(Database issue):D279-83.
- [65]Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, et al.: Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 2011, 8(1):67-9.
- [66]Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK: Oligomerized pool engineering (OPEN): an ‘open-source’ protocol for making customized zinc-finger arrays. Nat Protoc 2009, 4(10):1471-501.
- [67]Sander JD, Yeh JR, Peterson RT, Joung JK: Engineering zinc finger nucleases for targeted mutagenesis of zebrafish. Methods Cell Biol 2011, 104:51-8.
- [68]Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D: Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 2007, 35(Web Server issue):W599-605.
- [69]Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D: ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 2010, 38(Web Server issue):W462-8.
- [70]Boch J, Bonas U: Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 2010, 48:419-36.
- [71]Scholze H, Boch J: TAL effector-DNA specificity. Virulence 2010, 1(5):428-32.
- [72]Moscou MJ, Bogdanove AJ: A simple cipher governs DNA recognition by TAL effectors. Science 2009, 326(5959):1501.
- [73]Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK: FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 2012, 30(5):460-5.
- [74]Hsu PD, Lander ES, Zhang F: Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157(6):1262-78.
- [75]Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005, 60(2):174-82.
- [76]Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al.: CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315(5819):1709-12.
- [77]Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al.: Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321(5891):960-4.
- [78]Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM: Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 2013, 10(11):1116-21.
- [79]Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al.: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152(5):1173-83.
- [80]Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al.: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 2013, 31(9):833.
- [81]Pattanayak V, Ramirez CL, Joung JK, Liu DR: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 2011, 8(9):765-70.
- [82]Juillerat A, Dubois G, Valton J, Thomas S, Stella S, Marechal A, et al.: Comprehensive analysis of the specificity of transcription activator-like effector nucleases. Nucleic Acids Res 2014, 42(8):5390-402.
- [83]Fu YF, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al.: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013, 31(9):822.
- [84]Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014, 32(3):279-84.
- [85]Kuscu C, Arslan S, Singh R, Thorpe J, Adli M: Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 2014, 32(7):677-83.
- [86]Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, et al.: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 2014, 32(6):569-76.
- [87]Anders C, Niewoehner O, Duerst A, Jinek M: Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 2014, 513(7519):569-73.
- [88]Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014, 507(7490):62-7.
- [89]Bochtler M: Structural basis of the TAL effector-DNA interaction. Biol Chem 2012, 393(10):1055-66.
- [90]Jamieson AC, Miller JC, Pabo CO: Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2003, 2(5):361-8.
- [91]Kubik G, Schmidt MJ, Penner JE, Summerer D: Programmable and highly resolved in vitro detection of 5-methylcytosine by TALEs. Angew Chem Int Ed Engl 2014, 53(23):6002-6.
- [92]Liu Y, Toh H, Sasaki H, Zhang X, Cheng X: An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes Dev 2012, 26(21):2374-9.
- [93]Sasai N, Defossez PA: Many paths to one goal? The proteins that recognize methylated DNA in eukaryotes. Int J Dev Biol 2009, 53(2–3):323-34.
- [94]Isalan M, Choo Y: Engineered zinc finger proteins that respond to DNA modification by HaeIII and HhaI methyltransferase enzymes. J Mol Biol 2000, 295(3):471-7.
- [95]Dupuis ME, Villion M, Magadan AH, Moineau S: CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat Commun 2013, 4:2087.
- [96]Maier DA, Brennan AL, Jiang S, Binder-Scholl GK, Lee G, Plesa G, et al.: Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther 2013, 24(3):245-58.
- [97]Sander JD, Joung JK: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014, 32(4):347-55.
- [98]Xu GL, Bestor TH: Cytosine methylation targetted to pre-determined sequences. Nat Genet 1997, 17(4):376-8.
- [99]Smith AE, Ford KG: Specific targeting of cytosine methylation to DNA sequences in vivo. Nucleic Acids Res 2007, 35(3):740-54.
- [100]Smith AE, Hurd PJ, Bannister AJ, Kouzarides T, Ford KG: Heritable gene repression through the action of a directed DNA methyltransferase at a chromosomal locus. J Biol Chem 2008, 283(15):9878-85.
- [101]Li F, Papworth M, Minczuk M, Rohde C, Zhang Y, Ragozin S, et al.: Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res 2007, 35(1):100-12.
- [102]Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, et al.: Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 2013, 31(12):1137-42.
- [103]Chen H, Kazemier HG, de Groote ML, Ruiters MH, Xu GL, Rots MG: Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res 2014, 42(3):1563-74.
- [104]Gregory DJ, Zhang Y, Kobzik L, Fedulov AV: Specific transcriptional enhancement of inducible nitric oxide synthase by targeted promoter demethylation. Epigenetics 2013, 8(11):1205-12.
- [105]Osipovich O, Milley R, Meade A, Tachibana M, Shinkai Y, Krangel MS, et al.: Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat Immunol 2004, 5(3):309-16.
- [106]Falahi F, Huisman C, Kazemier HG, van der Vlies P, Kok K, Hospers GA, et al.: Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol Cancer Res 2013, 11(9):1029-39.
- [107]Snowden AW, Gregory PD, Case CC, Pabo CO: Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 2002, 12(24):2159-66.
- [108]Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, et al.: A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 2008, 10(11):1291-300.
- [109]Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, et al.: Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 2013, 31(12):1133-6.
- [110]Yang WM, Yao YL, Sun JM, Davie JR, Seto E: Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 1997, 272(44):28001-7.
- [111]Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, et al.: Optical control of mammalian endogenous transcription and epigenetic states. Nature 2013, 500(7463):472-6.
- [112]Zentner GE, Henikoff S: Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 2013, 20(3):259-66.
- [113]Jurkowska RZ, Jurkowski TP, Jeltsch A: Structure and function of mammalian DNA methyltransferases. Chembiochem 2011, 12(2):206-22.
- [114]Jones PA: Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012, 13(7):484-92.
- [115]Jeltsch A, Jurkowska RZ: New concepts in DNA methylation. Trends Biochem Sci 2014, 39(7):310-8.
- [116]Song J, Rechkoblit O, Bestor TH, Patel DJ: Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 2011, 331(6020):1036-40.
- [117]Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al.: Mutational landscape and significance across 12 major cancer types. Nature 2013, 502(7471):333-9.
- [118]Wang Y, Suh YA, Fuller MY, Jackson JG, Xiong S, Terzian T, et al.: Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. J Clin Invest 2011, 121(3):893-904.
- [119]Esteller M: Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 2007, 16 Spec No 1:R50-9.
- [120]Jones PA, Laird PW: Cancer epigenetics comes of age. Nat Genet 1999, 21(2):163-7.
- [121]Kaneko S, Son J, Bonasio R, Shen SS, Reinberg D: Nascent RNA interaction keeps PRC2 activity poised and in check. Genes Dev 2014, 28(18):1983-8.
- [122]Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR: Dynamics and memory of heterochromatin in living cells. Cell 2012, 149(7):1447-60.
- [123]McNamara AR, Hurd PJ, Smith AE, Ford KG: Characterisation of site-biased DNA methyltransferases: specificity, affinity and subsite relationships. Nucleic Acids Res 2002, 30(17):3818-30.
- [124]Jeltsch A, Jurkowska RZ: Multimerization of the dnmt3a DNA methyltransferase and its functional implications. Prog Mol Biol Transl Sci 2013, 117:445-64.
- [125]Rajavelu A, Jurkowska RZ, Fritz J, Jeltsch A: Function and disruption of DNA methyltransferase 3a cooperative DNA binding and nucleoprotein filament formation. Nucleic Acids Res 2012, 40(2):569-80.
- [126]Jurkowska RZ, Rajavelu A, Anspach N, Urbanke C, Jankevicius G, Ragozin S, et al.: Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules: heterochromatic localization and role of Dnmt3L. J Biol Chem 2011, 286(27):24200-7.
- [127]Emperle M, Rajavelu A, Reinhardt R, Jurkowska RZ, Jeltsch A: Cooperative DNA binding and protein/DNA fiber formation increases the activity of the Dnmt3a DNA methyltransferase. J Biol Chem 2014, 289(43):29602-13.
- [128]Chaikind B, Kilambi KP, Gray JJ, Ostermeier M: Targeted DNA methylation using an artificially bisected M.HhaI fused to zinc fingers. PLoS One 2012, 7(9):e44852.
- [129]Chaikind B, Ostermeier M: Directed evolution of improved zinc finger methyltransferases. PLoS One 2014, 9(5):e96931.
- [130]Senis E, Fatouros C, Grosse S, Wiedtke E, Niopek D, Mueller AK, et al.: CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol J 2014, 9(11):1402-12.
- [131]Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al.: CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014, 514(7522):380-4.
- [132]Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 2014, 24(6):1020-7.
- [133]Kim S, Kim D, Cho SW, Kim J, Kim JS: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014, 24(6):1012-9.
- [134]Liu J, Gaj T, Patterson JT, Sirk SJ, Barbas CF 3rd: Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One 2014, 9(1):e85755.
- [135]Gaj T, Liu J, Anderson KE, Sirk SJ, Barbas CF 3rd: Protein delivery using Cys2-His2 zinc-finger domains. ACS Chem Biol 2014, 9(8):1662-7.
- [136]Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015,33(1):73–80.
- [137]Wang T, Wei JJ, Sabatini DM, Lander ES: Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014, 343(6166):80-4.
- [138]Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al.: Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014, 343(6166):84-7.