| Biological Procedures Online | |
| A Medium-Throughput Single Cell CRISPR-Cas9 Assay to Assess Gene Essentiality | |
| A. R. Grassian1  T. M. E. Scales2  S. K. Knutson1  K. W. Kuntz1  N. J. McCarthy2  C. E. Lowe2  J. D. Moore2  R. A. Copeland1  H. Keilhack1  J. J. Smith1  J. A. Wickenden2  S. Ribich1  | |
| [1] Epizyme, Inc., 400 Technology Square, 4th Floor, Cambridge 02139, MA, USA | |
| [2] Horizon Discovery Ltd, 7100 Cambridge Research Park, Waterbeach, Cambridge CB25 9TL, UK | |
| 关键词: Epigenetics; Target identification; EZH2; Target validation; CRISPR; | |
| Others : 1233180 DOI : 10.1186/s12575-015-0028-4 |
|
| received in 2015-10-22, accepted in 2015-11-02, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Target selection for oncology is a crucial step in the successful development of therapeutics. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 editing of specific loci offers an alternative method to RNA interference and small molecule inhibitors for determining whether a cell line is dependent on a specific gene product for proliferation or survival. In our initial studies using CRISPR-Cas9 to verify the dependence on EZH2 activity for proliferation of a SMARCB1/SNF5/INI1 mutant malignant rhabdoid tumor (MRT) cell line, we noted that the initial reduction in proliferation was lost over time. We hypothesized that in the few cells that retain proliferative capacity, at least one allele of EZH2 remains functional. To verify this, we developed an assay to analyze 10s-100s of clonal cell populations for target gene disruption using restriction digest and fluorescent fragment length analyses.
Results
Our results clearly show that in cell lines in which EZH2 is essential for proliferation, at least one potentially functional allele of EZH2 is retained in the clones that survive.
Conclusion
This assay clearly indicates whether or not a specific gene is essential for survival and/or proliferation in a given cell line. Such data can aid the development of more robust therapeutics by increasing confidence in target selection.
【 授权许可】
2015 Grassian et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20151119013317915.pdf | 2102KB | ||
| Fig. 3. | 55KB | Image | |
| Fig. 2. | 181KB | Image | |
| Fig. 1. | 106KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
【 参考文献 】
- [1]Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al.. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483(7391):603-7.
- [2]Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA et al.. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013; 45(10):1113-20.
- [3]Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov. 2011; 10(9):712.
- [4]Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. Nature. 2012; 483(7391):531-3.
- [5]Hoffman GR, Rahal R, Buxton F, Xiang K, McAllister G, Frias E et al.. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc Natl Acad Sci U S A. 2014; 111(8):3128-33.
- [6]Knutson SK, Warholic NM, Wigle TJ, Klaus CR, Allain CJ, Raimondi A et al.. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci U S A. 2013; 110(19):7922-7.
- [7]Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R et al.. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci U S A. 2012; 109(52):21360-5.
- [8]Sroczynska P, Cruickshank VA, Bukowski JP, Miyagi S, Bagger FO, Walfridsson J et al.. shRNA screening identifies JMJD1C as being required for leukemia maintenance. Blood. 2014; 123(12):1870-82.
- [9]Zuber J, Rappaport AR, Luo W, Wang E, Chen C, Vaseva AV et al.. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 2011; 25(15):1628-40.
- [10]Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV et al.. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011; 20(1):66-78.
- [11]Nguyen AT, Taranova O, He J, Zhang Y. DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood. 2011; 117(25):6912-22.
- [12]Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA et al.. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood. 2013; 122(6):1017-25.
- [13]Moore JD. The impact of CRISPR-Cas9 on target identification and validation. Drug Discov Today. 2015; 20(4):450-7.
- [14]Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol. 2015; 33(6):661-7.
- [15]Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096):816-21.
- [16]Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al.. RNA-guided human genome engineering via Cas9. Science. 2013; 339(6121):823-6.
- [17]Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al.. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002; 298(5595):1039-43.
- [18]Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002; 16(22):2893-905.
- [19]Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM et al.. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A. 2010; 107(49):20980-5.
- [20]Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al.. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002; 419(6907):624-9.
- [21]Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD et al.. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol. 2013; 9(10):643-50.
- [22]Gonzalez ME, Li X, Toy K, DuPrie M, Ventura AC, Banerjee M et al.. Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1. Oncogene. 2009; 28(6):843-53.
- [23]Wilson BG, Wang X, Shen X, McKenna ES, Lemieux ME, Cho YJ et al.. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell. 2010; 18(4):316-28.
- [24]Chesworth R, Duncan KW, Kawano S, Keilhack H, Klaus C, Kuntz KW, et al. Aryl-or heteroaryl-substituted benzene compounds; WO2012142504 A1. WO2012142504 A1; 2012.
- [25]Chapman KM, Medrano GA, Jaichander P, Chaudhary J, Waits AE, Nobrega MA et al.. Targeted Germline Modifications in Rats Using CRISPR/Cas9 and Spermatogonial Stem Cells. Cell Rep. 2015; 10(11):1828-35.
- [26]Parikh BA, Beckman DL, Patel SJ, White JM, Yokoyama WM. Detailed phenotypic and molecular analyses of genetically modified mice generated by CRISPR-Cas9-mediated editing. PLoS ONE. 2015; 10(1):e0116484.
- [27]Bae S, Kweon J, Kim HS, Kim JS. Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. 2014; 11(7):705-6.
- [28]Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC et al.. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell. 2012; 21(2):227-39.
- [29]Weigelt B, Lo AT, Park CC, Gray JW, Bissell MJ. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat. 2010; 122(1):35-43.
- [30]Young LC, Hartig N, Munoz-Alegre M, Oses-Prieto JA, Durdu S, Bender S et al.. An MRAS, SHOC2, and SCRIB complex coordinates ERK pathway activation with polarity and tumorigenic growth. Mol Cell. 2013; 52(5):679-92.
- [31]Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014; 11(8):783-4.
- [32]Grassian AR, Parker SJ, Davidson SM, Divakaruni AS, Green CR, Zhang X et al.. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 2014; 74(12):3317-31.
PDF