期刊论文详细信息
EvoDevo
Identification of a putative germ plasm in the amphipod Parhyale hawaiensis
Cassandra G Extavour1  Tripti Gupta1 
[1] Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
关键词: Cytoplasmic determinant;    germ cell-less;    orb;    vasa;    Amphipod;    Arthropod;    Germ line;    Germ plasm;   
Others  :  804181
DOI  :  10.1186/2041-9139-4-34
 received in 2013-08-31, accepted in 2013-11-01,  发布年份 2013
PDF
【 摘 要 】

Background

Specification of the germ line is an essential event during the embryonic development of sexually reproducing animals, as germ line cells are uniquely capable of giving rise to the next generation. Animal germ cells arise through either inheritance of a specialized, maternally supplied cytoplasm called 'germ plasm’ or though inductive signaling by somatic cells. Our understanding of germ cell determination is based largely on a small number of model organisms. To better understand the evolution of germ cell specification, we are investigating this process in the amphipod crustacean Parhyale hawaiensis. Experimental evidence from previous studies demonstrated that Parhyale germ cells are specified through inheritance of a maternally supplied cytoplasmic determinant; however, this determinant has not been identified.

Results

Here we show that the one-cell stage Parhyale embryo has a distinct cytoplasmic region that can be identified by morphology as well as the localization of germ line-associated RNAs. Removal of this cytoplasmic region results in a loss of embryonic germ cells, supporting the hypothesis that it is required for specification of the germ line. Surprisingly, we found that removal of this distinct cytoplasm also results in aberrant somatic cell behaviors, as embryos fail to gastrulate.

Conclusions

Parhyale hawaiensis embryos have a specialized cytoplasm that is required for specification of the germ line. Our data provide the first functional evidence of a putative germ plasm in a crustacean and provide the basis for comparative functional analysis of germ plasm formation within non-insect arthropods.

【 授权许可】

   
2013 Gupta and Extavour; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708054407520.pdf 1364KB PDF download
Figure 5. 77KB Image download
Figure 4. 134KB Image download
Figure 3. 100KB Image download
Figure 2. 110KB Image download
Figure 1. 92KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Extavour CG, Akam M: Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 2003, 130(24):5869-5884.
  • [2]Mahowald AP, Hennen S: Ultrastructure of the 'germ plasm’ in eggs and embryos of Rana pipiens. Dev Biol 1971, 24(1):37-53.
  • [3]Eddy EM: Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 1975, 43:229-280.
  • [4]Nieuwkoop PD, Sutasurya LA: Primordial Germ Cells in the Chordates. Cambridge: Cambridge University Press; 1979.
  • [5]Nieuwkoop PD, Sutasurya LA: Primordial Germ Cells in the Invertebrates: From Epigenesis to Preformation. Cambridge: Cambridge University Press; 1981.
  • [6]Houston DW, King ML: Germ plasm and molecular determinants of germ cell fate. Curr Top Dev Biol 2000, 50:155-181.
  • [7]Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I: RNA granules in germ cells. Cold Spring Harb Perspect Biol 2011., 3(12) doi: 10.1101/cshperspect.a002774
  • [8]Ewen-Campen B, Schwager EE, Extavour CG: The molecular machinery of germ line specification. Mol Reprod Dev 2010, 77(1):3-18.
  • [9]Gustafson EA, Wessel GM: Vasa genes: emerging roles in the germ line and in multipotent cells. Bioessays 2010, 32(7):626-637.
  • [10]Hegner RW: Effects of removing the germ-cell determinants from the eggs of some chrysomelid beetles. Preliminary report. Biol Bull 1908, 16:19-26.
  • [11]Hegner RW: Experiments with chrysomelid beetles. III. The effects of killing parts of the eggs of Leptinotarsa decemlineata. Biol Bull 1911, 20:237-251.
  • [12]Illmensee K, Mahowald AP: Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Natl Acad Sci USA 1974, 71(4):1016-1020.
  • [13]Tada H, Mochii M, Orii H, Watanabe K: Ectopic formation of primordial germ cells by transplantation of the germ plasm: direct evidence for germ cell determinant in Xenopus. Dev Biol 2012, 371(1):86-93.
  • [14]Ephrussi A, Lehmann R: Induction of germ cell formation by oskar. Nature 1992, 358(6385):387-392.
  • [15]Ewen-Campen B, Srouji JR, Schwager EE, Extavour CG: Oskar predates the evolution of germ plasm in insects. Curr Biol 2012, 22(23):2278-2283.
  • [16]Lynch JA, Ozuak O, Khila A, Abouheif E, Desplan C, Roth S: The phylogenetic origin of oskar coincided with the origin of maternally provisioned germ plasm and pole cells at the base of the Holometabola. PLoS Genet 2011, 7(4):e1002029.
  • [17]Heming BS: Origin and fate of germ cells in male and female embryos of Haplothrips verbasci (Osborn) (Insecta, Thysanoptera, Phlaeothripidae). J Morphol 1979, 160:323-344.
  • [18]Sagawa K, Yamagata H, Shiga Y: Exploring embryonic germ line development in the water flea, Daphnia magna, by zinc-finger-containing VASA as a marker. Gene Expr Patterns 2005, 5(5):669-678.
  • [19]Pawlak JB, Sellars MJ, Wood A, Hertzler PL: Cleavage and gastrulation in the Kuruma shrimp Penaeus (Marsupenaeus) japonicus (Bate): a revised cell lineage and identification of a presumptive germ cell marker. Dev Growth Differ 2010, 52(8):677-692.
  • [20]Gerberding M, Browne WE, Patel NH: Cell lineage analysis of the amphipod crustacean Parhyale hawaiensis reveals an early restriction of cell fates. Development 2002, 129(24):5789-5801.
  • [21]Extavour CG: The fate of isolated blastomeres with respect to germ cell formation in the amphipod crustacean Parhyale hawaiensis. Dev Biol 2005, 277(2):387-402.
  • [22]Price AL, Modrell MS, Hannibal RL, Patel NH: Mesoderm and ectoderm lineages in the crustacean Parhyale hawaiensis display intra-germ layer compensation. Dev Biol 2010, 341(1):256-266.
  • [23]Alwes F, Hinchen B, Extavour CG: Patterns of cell lineage, movement, and migration from germ layer specification to gastrulation in the amphipod crustacean Parhyale hawaiensis. Dev Biol 2011, 139(1):110-123.
  • [24]Chaw RC, Patel NH: Independent migration of cell populations in the early gastrulation of the amphipod crustacean Parhyale hawaiensis. Dev Biol 2012, 371(1):94-109.
  • [25]Ozhan-Kizil G, Havemann J, Gerberding M: Germ cells in the crustacean Parhyale hawaiensis depend on Vasa protein for their maintenance but not for their formation. Dev Biol 2009, 327(1):230-239.
  • [26]Rehm EJ, Hannibal RL, Chaw RC, Vargas-Vila MA, Patel NH: The crustacean Parhyale hawaiensis: a new model for arthropod development. Cold Spring Harb Protoc 2009, (1):pdb.emo114. doi: 10.1101/pdb.emo114.
  • [27]Rehm EJ, Hannibal RL, Chaw RC, Vargas-Vila MA, Patel NH: In situ hybridization of labeled RNA probes to fixed Parhyale hawaiensis embryos. Cold Spring Harb Protoc 2009, 2009(1):pdb.prot5130. doi: 10.1101/pdb.prot5130
  • [28]Zeng V, Extavour CG: ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species. Database (Oxford) 2012, 2012:bas048. doi: 10.1093/database/bas048. Print 2012
  • [29]Juliano CE, Swartz SZ, Wessel GM: A conserved germline multipotency program. Development 2010, 137(24):4113-4126.
  • [30]Jongens TA, Hay B, Jan LY, Jan YN: The germ cell-less gene product: a posteriorly localized component necessary for germ cell development in Drosophila. Cell 1992, 70(4):569-584.
  • [31]Lantz V, Ambrosio L, Schedl P: The Drosophila orb gene is predicted to encode sex-specific germline RNA-binding proteins and has localized transcripts in ovaries and early embryos. Development 1992, 115(1):75-88.
  • [32]Rangan P, DeGennaro M, Jaime-Bustamante K, Coux RX, Martinho RG, Lehmann R: Temporal and spatial control of germ-plasm RNAs. Curr Biol 2009, 19(1):72-77.
  • [33]Shippy TD, Yeager SJ, Denell RE: The Tribolium spineless ortholog specifies both larval and adult antennal identity. Dev Genes Evol 2009, 219(1):45-51.
  • [34]Rogers BT, Peterson MD, Kaufman TC: The development and evolution of insect mouthparts as revealed by the expression patterns of gnathocephalic genes. Evol Dev 2002, 4(2):96-110.
  • [35]Browne WE, Price AL, Gerberding M, Patel NH: Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis 2005, 42(3):124-149.
  • [36]Alwes F, Hinchen B, Extavour CG: Patterns of cell lineage, movement, and migration from germ layer specification to gastrulation in the amphipod crustacean Parhyale hawaiensis. Dev Biol 2011, 359(1):110-123.
  • [37]Price AL, Patel NH: Investigating divergent mechanisms of mesoderm development in arthropods: the expression of Ph-twist and Ph-mef2 in Parhyale hawaiensis. J Exp Zool B Mol Dev Evol 2008, 310(1):24-40.
  • [38]Nestorov P, Battke F, Levesque MP, Gerberding M: The maternal transcriptome of the crustacean Parhyale hawaiensis is inherited asymmetrically to invariant cell lineages of the ectoderm and mesoderm. PLoS One 2013, 8(2):e56049.
  • [39]Strome S, Wood WB: Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell 1983, 35(1):15-25.
  • [40]Schneider SQ, Bowerman B: Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote. Annu Rev Genet 2003, 37:221-249.
  • [41]Biffis C, Alwes F, Scholtz G: Cleavage and gastrulation of the dendrobranchiate shrimp Penaeus monodon (Crustacea, Malacostraca, Decapoda). Arthropod Struct Dev 2009, 38(6):527-540.
  • [42]Foote A, Sellars M, Coman G, Merritt D: Cytological defects during embryogenesis in heat-induced tetraploid Kuruma shrimp Penaeus japonicus. Arthropod Struct Dev 2010, 39(4):268-275.
  • [43]Grattan RM, McCulloch RJ, Sellars MJ, Hertzler PL: Ultrastructure of putative germ granules in the penaeid shrimp Marsupenaeus japonicus. Arthropod Struct Dev 2013, 42(2):153-164.
  • [44]Zilch R: Embryologische Untersuchungen an der holoblastischen Ontogenese vonPenaeus trisulcatus Leach (Crustacea, Decapoda). Zoomophologie 1978, 90:67-100.
  • [45]Zilch R: Cell lineage in arthropods? Fortschritte in der zoologischen Systematik und Evolutionsforschung 1979, 1:19-41.
  • [46]Hertzler PL: Development of the mesendoderm in the dendrobranchiate shrimp Sicyonia ingentis. Arthropod Struct Dev 2002, 31(1):33-49.
  • [47]Hertzler PL: Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus) vannemei (Malacostraca, Decapoda, Dendrobranchiata). Arthropod Struct Dev 2005, 34:455-469.
  • [48]Zhou Y, King ML: Sending RNAs into the future: RNA localization and germ cell fate. IUBMB Life 2004, 56(1):19-27.
  • [49]Manseau LJ, Schupbach T: The egg came first, of course! Anterior-posterior pattern formation in Drosophila embryogenesis and oogenesis. Trends Genet 1989, 5(12):400-405.
  文献评价指标  
  下载次数:32次 浏览次数:14次