期刊论文详细信息
Clinical and Translational Allergy
Expression profiling and functional analysis of Toll-like receptors in primary healthy human nasal epithelial cells shows no correlation and a refractory LPS response
C. M. van Drunen1  E. C. de Jong2  W. J. Fokkens1  S. Luiten1  S. M. Reinartz1  K. I. L. Röschmann1  J. van Tongeren1 
[1] Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands;Department of Cell Biology & Histology, Academic Medical Center (AMC), Amsterdam, The Netherlands
关键词: Cytokines;    Chemokines;    Toll-like receptor;    Pattern recognition receptors;    Nasal epithelial cells;   
Others  :  1234868
DOI  :  10.1186/s13601-015-0086-3
 received in 2015-09-08, accepted in 2015-11-24,  发布年份 2015
PDF
【 摘 要 】

Background

Innate immune recognition via Toll-like receptors (TLRs) on barrier cells like epithelial cells has been shown to influence the regulation of local immune responses. Here we determine expression level variations and functionality of TLRs in nasal epithelial cells from healthy donors.

Methods

Expression levels of the different TLRs on primary nasal epithelial cells from healthy donors derived from inferior turbinates was determined by RT-PCR. Functionality of the TLRs was determined by stimulation with the respective ligand and evaluation of released mediators by Luminex ELISA.

Results

Primary nasal epithelial cells express different levels of TLR1-6 and TLR9. We were unable to detect mRNA of TLR7, TLR8 and TLR10. Stimulation with Poly(I:C) resulted in a significant increased secretion of IL-4, IL-6, RANTES, IP-10, MIP-1β, VEGF, FGF, IL-1RA, IL-2R and G-CSF. Stimulation with PGN only resulted in significant increased production of IL-6, VEGF and IL-1RA. Although the expression of TLR4 and co-stimulatory molecules could be confirmed, primary nasal epithelial cells appeared to be unresponsive to stimulation with LPS. Furthermore, we observed huge individual differences in TLR agonist-induced mediator release, which did not correlate with the respective expression of TLRs.

Conclusion

Our data suggest that nasal epithelium seems to have developed a delicate system of discrimination and recognition of microbial patterns. Hypo-responsiveness to LPS could provide a mechanism to dampen the inflammatory response in the nasal mucosa in order to avoid a chronic inflammatory response. Individual, differential expression of TLRs on epithelial cells and functionality in terms of released mediators might be a crucial factor in explaining why some people develop allergies to common inhaled antigens, and others do not.

【 授权许可】

   
2015 van Tongeren et al.

【 预 览 】
附件列表
Files Size Format View
20151219030942198.pdf 1307KB PDF download
Fig.7. 21KB Image download
Fig.6. 33KB Image download
Fig.5. 14KB Image download
Fig.4. 12KB Image download
Fig.3. 23KB Image download
Fig.2. 11KB Image download
Fig.1. 28KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

【 参考文献 】
  • [1]Toppila-Salmi S, van Drunen CM, Fokkens WJ, Golebski K, Mattila P, Joenvaara S, Renkonen J, Renkonen R: Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis. Curr Allergy Asthma Rep. 2015, 15(2):495.
  • [2]van Tongeren J, Reinartz SM, Fokkens WJ, de Jong EC, van Drunen CM: Interactions between epithelial cells and dendritic cells in airway immune responses: lessons from allergic airway disease. Allergy 2008, 63(9):1124-1135.
  • [3]Vroling AB, Fokkens WJ, van Drunen CM: How epithelial cells detect danger: aiding the immune response. Allergy 2008, 63(9):1110-1123.
  • [4]Janeway CA Jr, Medzhitov R: Innate immune recognition. Annu Rev Immunol 2002, 20:197-216.
  • [5]Akira S, Takeda K, Kaisho T: Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001, 2(8):675-680.
  • [6]Kaisho T, Akira S: Toll-like receptor function and signaling. J Allergy Clin Immunol 2006, 117(5):979-987.
  • [7]Farhat K, Riekenberg S, Heine H, Debarry J, Lang R, Mages J, et al.: Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol 2008, 83(3):692-701.
  • [8]Takeuchi O, Hoshino K, Akira S: Cutting edge: tLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 2000, 165(10):5392-5396.
  • [9]Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, et al.: Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000, 1(5):398-401.
  • [10]Wang JE, Warris A, Ellingsen EA, Jorgensen PF, Flo TH, Espevik T, et al.: Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun 2001, 69(4):2402-2406.
  • [11]Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, et al.: Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 2002, 298(5595):1025-1029.
  • [12]Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M: Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 2002, 168(12):5989-5992.
  • [13]Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H: HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 2002, 277(17):15107-15112.
  • [14]Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al.: A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408(6813):740-745.
  • [15]Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al.: Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002, 3(2):196-200.
  • [16]Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN: House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 2009, 15(4):410-416.
  • [17]Redecke V, Hacker H, Datta SK, Fermin A, Pitha PM, Broide DH, et al.: Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 2004, 172(5):2739-2743.
  • [18]Hollingsworth JW, Whitehead GS, Lin KL, Nakano H, Gunn MD, Schwartz DA, et al.: TLR4 signaling attenuates ongoing allergic inflammation. J Immunol 2006, 176(10):5856-5862.
  • [19]Page K, Ledford JR, Zhou P, Wills-Karp M: A TLR2 agonist in German cockroach frass activates MMP-9 release and is protective against allergic inflammation in mice. J Immunol 2009, 183(5):3400-3408.
  • [20]Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K: Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 2002, 196(12):1645-1651.
  • [21]Jia HP, Kline JN, Penisten A, Apicella MA, Gioannini TL, Weiss J, et al.: Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am J Physiol Lung Cell Mol Physiol 2004, 287(2):L428-L437.
  • [22]Schulz C, Farkas L, Wolf K, Kratzel K, Eissner G, Pfeifer M: Differences in LPS-induced activation of bronchial epithelial cells (BEAS-2B) and type II-like pneumocytes (A-549). Scand J Immunol 2002, 56(3):294-302.
  • [23]Thorley AJ, Grandolfo D, Lim E, Goldstraw P, Young A, Tetley TD: Innate immune responses to bacterial ligands in the peripheral human lung—role of alveolar epithelial TLR expression and signalling. PLoS One 2011, 6(7):e21827.
  • [24]Muir A, Soong G, Sokol S, Reddy B, Gomez MI, Van HA, et al.: Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 2004, 30(6):777-783.
  • [25]Ritter M, Mennerich D, Weith A, Seither P: Characterization of Toll-like receptors in primary lung epithelial cells: strong impact of the TLR3 ligand poly(I:C) on the regulation of Toll-like receptors, adaptor proteins and inflammatory response. J Inflamm (Lond) 2005, 29(2):16. BioMed Central Full Text
  • [26]Uehara A, Fujimoto Y, Fukase K, Takada H: Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol 2007, 44(12):3100-3111.
  • [27]Claeys S, de BT, Holtappels G, Gevaert P, Verhasselt B, van CP, et al.: Human beta-defensins and toll-like receptors in the upper airway. Allergy 2003, 58(8):748-753.
  • [28]Lin CF, Tsai CH, Cheng CH, Chen YS, Tournier F, Yeh TH: Expression of Toll-like receptors in cultured nasal epithelial cells. Acta Otolaryngol 2007, 127(4):395-402.
  • [29]Wang J, Matsukura S, Watanabe S, Adachi M, Suzaki H: Involvement of Toll-like receptors in the immune response of nasal polyp epithelial cells. Clin Immunol 2007, 124(3):345-352.
  • [30]Tengroth L, Millrud CR, Kvarnhammar AM, Kumlien Georén S, Latif L, Cardell LO: Functional effects of Toll-like receptor (TLR)3, 7, 9, RIG-I and MDA-5 stimulation in nasalepithelial cells. PLoS One 2014, 9(6):e98239.
  • [31]Kormann MS, Depner M, Hartl D, Klopp N, Illig T, Adamski J, et al.: Toll-like receptor heterodimer variants protect from childhood asthma. J Allergy Clin Immunol 2008, 122(1):86-92, 92.
  • [32]Lebre MC, van der Aar AM, van BL, Van Capel TM, Schuitemaker JH, Kapsenberg ML, et al.: Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol 2007, 127(2):331-341.
  • [33]Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, et al.: Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med 1994, 179(1):269-277.
  • [34]Kennedy MN, Mullen GE, Leifer CA, Lee C, Mazzoni A, Dileepan KN, et al.: A complex of soluble MD-2 and lipopolysaccharide serves as an activating ligand for Toll-like receptor 4. J Biol Chem 2004, 279(33):34698-34704.
  • [35]Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP: Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol 2004, 31(3):358-364.
  • [36]Renkonen J, Toppila-Salmi S, Joenväärä S, Mattila P, Parviainen V, Hagström J, et al.: Expression of Toll-like receptors in nasal epithelium in allergic rhinitis. APMIS. 2015, 123(8):716-725.
  • [37]Lenoir C, Sapin C, Broquet AH, Jouniaux AM, Bardin S, Gasnereau I, et al.: MD-2 controls bacterial lipopolysaccharide hyporesponsiveness in human intestinal epithelial cells. Life Sci 2008, 82(9–10):519-528.
  • [38]Lampinen M, Carlson M, Hakansson LD, Venge P: Cytokine-regulated accumulation of eosinophils in inflammatory disease. Allergy 2004, 59(8):793-805.
  • [39]Golebski K, Luiten S, van Egmond D, de Groot E, Röschmann KI, Fokkens WJ, van Drunen CM: High degree of overlap between responses to a virus and to the house dust mite allergen in airway epithelial cells. PLoS One 2014, 9(2):e87768.
  • [40]Fransson M, Adner M, Erjefalt J, Jansson L, Uddman R, Cardell LO: Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis. Respir Res 2005, 6:100. BioMed Central Full Text
  • [41]Tan AM, Chen HC, Pochard P, Eisenbarth SC, Herrick CA, Bottomly HK: TLR4 signaling in stromal cells is critical for the initiation of allergic Th2 responses to inhaled antigen. J Immunol 2010, 184(7):3535-3544.
  文献评价指标  
  下载次数:39次 浏览次数:9次