期刊论文详细信息
Journal of Angiogenesis Research
Macrophages and angiogenesis: a role for Wnt signaling
Christopher C W Hughes2  Andrew C Newman1 
[1] The Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA;The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA, 92697, USA
关键词: Wnt;    Angiogenesis;    Macrophage;   
Others  :  801962
DOI  :  10.1186/2045-824X-4-13
 received in 2012-06-23, accepted in 2012-07-13,  发布年份 2012
PDF
【 摘 要 】

Macrophages regulate many developmental and pathological processes in both embryonic and adult tissues, and recent studies have shown a significant role in angiogenesis. Similarly, Wnt signaling is fundamental to tissue morphogenesis and also has a role in vascular development. In this review, we summarize recent advances in the field of macrophage-regulated angiogenesis, with a focus on the role of macrophage-derived Wnt ligands. We review data that provide both direct and indirect evidence for macrophage-derived Wnt regulation of physiologic and pathologic angiogenesis. Finally, we propose that Wnt signaling plays a central role in differentiation of tumor associated and wound infiltrating macrophages to a proangiogenic phenotype.

【 授权许可】

   
2012 Newman and Hughes; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708014137582.pdf 356KB PDF download
Figure 1. 93KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Carmeliet P, Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473:298-307.
  • [2]Hughes CC: Endothelial-stromal interactions in angiogenesis. Curr Opin Hematol 2008, 15:204-209.
  • [3]Clevers H: Wnt/beta-catenin signaling in development and disease. Cell 2006, 127:469-480.
  • [4]Pollard JW: Trophic macrophages in development and disease. Nat Rev Immunol 2009, 9:259-270.
  • [5]Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity 2010, 32:593-604.
  • [6]Sica A, Mantovani A: Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012, 122:787-795.
  • [7]Angers S, Moon RT: Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009, 10:468-477.
  • [8]van Amerongen R, Nusse R: Towards an integrated view of Wnt signaling in development. Development 2009, 136:3205-3214.
  • [9]Mikels AJ, Nusse R: Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 2006, 4:e115.
  • [10]Miller JR: The Wnts. Genome Biol 2002., 3REVIEWS3001
  • [11]van Amerongen R, Mikels A, Nusse R: Alternative wnt signaling is initiated by distinct receptors. Sci Signal 2008, 1:re9.
  • [12]Seifert JR, Mlodzik M: Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 2007, 8:126-138.
  • [13]Goodwin AM, Sullivan KM, D’Amore PA: Cultured endothelial cells display endogenous activation of the canonical Wnt signaling pathway and express multiple ligands, receptors, and secreted modulators of Wnt signaling. Dev Dyn 2006, 235:3110-3120.
  • [14]Favre CJ, Mancuso M, Maas K, McLean JW, Baluk P, McDonald DM: Expression of genes involved in vascular development and angiogenesis in endothelial cells of adult lung. Am J Physiol Heart Circ Physiol 2003, 285:H1917-H1938.
  • [15]van Gijn ME, Blankesteijn WM, Smits JF, Hierck B, Gittenberger-de Groot AC: Frizzled 2 is transiently expressed in neural crest-containing areas during development of the heart and great arteries in the mouse. Anat Embryol (Berl) 2001, 203:185-192.
  • [16]Mao C, Malek OT, Pueyo ME, Steg PG, Soubrier F: Differential expression of rat frizzled-related frzb-1 and frizzled receptor fz1 and fz2 genes in the rat aorta after balloon injury. Arterioscler Thromb Vasc Biol 2000, 20:43-51.
  • [17]Wright M, Aikawa M, Szeto W, Papkoff J: Identification of a Wnt-responsive signal transduction pathway in primary endothelial cells. Biochem Biophys Res Commun 1999, 263:384-388.
  • [18]Masckauchan TN, Shawber CJ, Funahashi Y, Li CM, Kitajewski J: Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 2005, 8:43-51.
  • [19]Masckauchan TN, Agalliu D, Vorontchikhina M, Ahn A, Parmalee NL, Li CM, Khoo A, Tycko B, Brown AM, Kitajewski J: Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell 2006, 17:5163-5172.
  • [20]Goodwin AM, Kitajewski J, D’Amore PA: Wnt1 and Wnt5a affect endothelial proliferation and capillary length; Wnt2 does not. Growth Factors 2007, 25:25-32.
  • [21]de Jesus Perez VA, Alastalo TP, Wu JC, Axelrod JD, Cooke JP, Amieva M, Rabinovitch M: Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-RhoA-Rac1 pathways. J Cell Biol 2009, 184:83-99.
  • [22]Cheng CW, Yeh JC, Fan TP, Smith SK, Charnock-Jones DS: Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration. Biochem Biophys Res Commun 2008, 365:285-290.
  • [23]Cheng CW, Smith SK, Charnock-Jones DS: Wnt-1 signaling inhibits human umbilical vein endothelial cell proliferation and alters cell morphology. Exp Cell Res 2003, 291:415-425.
  • [24]Ezan J, Leroux L, Barandon L, Dufourcq P, Jaspard B, Moreau C, Allieres C, Daret D, Couffinhal T, Duplaa C: FrzA/sFRP-1, a secreted antagonist of the Wnt-Frizzled pathway, controls vascular cell proliferation in vitro and in vivo. Cardiovasc Res 2004, 63:731-738.
  • [25]Wang H, Charles PC, Wu Y, Ren R, Pi X, Moser M, Barshishat-Kupper M, Rubin JS, Perou C, Bautch V, Patterson C: Gene expression profile signatures indicate a role for Wnt signaling in endothelial commitment from embryonic stem cells. Circ Res 2006, 98:1331-1339.
  • [26]Blankesteijn WM, van Gijn ME, Essers-Janssen YP, Daemen MJ, Smits JF: Beta-catenin, an inducer of uncontrolled cell proliferation and migration in malignancies, is localized in the cytoplasm of vascular endothelium during neovascularization after myocardial infarction. Am J Pathol 2000, 157:877-883.
  • [27]Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA: Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 2009, 106:641-646.
  • [28]Eberhart CG, Argani P: Wnt signaling in human development: beta-catenin nuclear translocation in fetal lung, kidney, placenta, capillaries, adrenal, and cartilage. Pediatr Dev Pathol 2001, 4:351-357.
  • [29]Eberhart CG, Tihan T, Burger PC: Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol 2000, 59:333-337.
  • [30]Maretto S, Cordenonsi M, Dupont S, Braghetta P, Broccoli V, Hassan AB, Volpin D, Bressan GM, Piccolo S: Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci U S A 2003, 100:3299-3304.
  • [31]Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, Ondr JK, Rao S, Lang RA, Thurston G, Gerhardt H: Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 2009, 16:70-82.
  • [32]Yano H, Hara A, Shinoda J, Takenaka K, Yoshimi N, Mori H, Sakai N: Immunohistochemical analysis of beta-catenin in N-ethyl-N-nitrosourea-induced rat gliomas: implications in regulation of angiogenesis. Neurol Res 2000, 22:527-532.
  • [33]Yano H, Hara A, Takenaka K, Nakatani K, Shinoda J, Shimokawa K, Yoshimi N, Mori H, Sakai N: Differential expression of beta-catenin in human glioblastoma multiforme and normal brain tissue. Neurol Res 2000, 22:650-656.
  • [34]Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM, Iruela-Arispe ML, Adams RH, Dejana E: The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell 2010, 18:938-949.
  • [35]Nimmagadda S, Geetha-Loganathan P, Scaal M, Christ B, Huang R: FGFs, Wnts and BMPs mediate induction of VEGFR-2 (Quek-1) expression during avian somite development. Dev Biol 2007, 305:421-429.
  • [36]Monkley SJ, Delaney SJ, Pennisi DJ, Christiansen JH, Wainwright BJ: Targeted disruption of the Wnt2 gene results in placentation defects. Development 1996, 122:3343-3353.
  • [37]Robitaille J, MacDonald ML, Kaykas A, Sheldahl LC, Zeisler J, Dube MP, Zhang LH, Singaraja RR, Guernsey DL, Zheng B, et al.: Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet 2002, 32:326-330.
  • [38]Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, Peachey NS, Nathans J: Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 2009, 139:285-298.
  • [39]Descamps B, Sewduth R, Ferreira Tojais N, Jaspard B, Reynaud A, Sohet F, Lacolley P, Allieres C, Lamaziere JM, Moreau C, et al.: Frizzled 4 regulates arterial network organization through noncanonical Wnt/planar cell polarity signaling. Circ Res 2012, 110:47-58.
  • [40]Ishikawa T, Tamai Y, Zorn AM, Yoshida H, Seldin MF, Nishikawa S, Taketo MM: Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development 2001, 128:25-33.
  • [41]Liu C, Nathans J: An essential role for frizzled 5 in mammalian ocular development. Development 2008, 135:3567-3576.
  • [42]Dejana E: The role of wnt signaling in physiological and pathological angiogenesis. Circ Res 2010, 107:943-952.
  • [43]Franco CA, Liebner S, Gerhardt H: Vascular morphogenesis: a Wnt for every vessel? Curr Opin Genet Dev 2009, 19:476-483.
  • [44]Tsaousi A, Mill C, George SJ: The Wnt pathways in vascular disease: lessons from vascular development. Curr Opin Lipidol 2011, 22:350-357.
  • [45]Nucera S, Biziato D, De Palma M: The interplay between macrophages and angiogenesis in development, tissue injury and regeneration. Int J Dev Biol 2011, 55:495-503.
  • [46]Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141:39-51.
  • [47]Pucci F, Venneri MA, Biziato D, Nonis A, Moi D, Sica A, Di Serio C, Naldini L, De Palma M: A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 2009, 114:901-914.
  • [48]Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA, Grimmond SM, Hume DA, Ricardo SD, Little MH: Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol 2007, 308:232-246.
  • [49]Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C: Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 2010, 116:829-840.
  • [50]Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J: Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 2011, 118:3436-3439.
  • [51]Rymo SF, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C: A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS One 2011, 6:e15846.
  • [52]Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, Shapiro SD, Kolattukudy PE: Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res 2000, 87:378-384.
  • [53]Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Muller W, Roers A, Eming SA: Differential roles of macrophages in diverse phases of skin repair. J Immunol 2010, 184:3964-3977.
  • [54]Okuno Y, Nakamura-Ishizu A, Kishi K, Suda T, Kubota Y: Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 2011, 117:5264-5272.
  • [55]Mantovani A, Sica A: Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 2010, 22:231-237.
  • [56]Zumsteg A, Christofori G: Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol 2009, 21:60-70.
  • [57]Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475:222-225.
  • [58]Scholl SM, Pallud C, Beuvon F, Hacene K, Stanley ER, Rohrschneider L, Tang R, Pouillart P, Lidereau R: Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst 1994, 86:120-126.
  • [59]Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, Saya H, Suda T: M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med 2009, 206:1089-1102.
  • [60]Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW: Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 2006, 66:11238-11246.
  • [61]Lin EY, Pollard JW: Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res 2007, 67:5064-5066.
  • [62]Jin H, Su J, Garmy-Susini B, Kleeman J, Varner J: Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res 2006, 66:2146-2152.
  • [63]Leek RD, Harris AL: Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 2002, 7:177-189.
  • [64]Giraudo E, Inoue M, Hanahan D: An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 2004, 114:623-633.
  • [65]Nocito A, Dahm F, Jochum W, Jang JH, Georgiev P, Bader M, Graf R, Clavien PA: Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res 2008, 68:5152-5158.
  • [66]Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G: HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008, 13:206-220.
  • [67]Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA, Johnson RS: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 2008, 456:814-818.
  • [68]De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L: Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005, 8:211-226.
  • [69]Coffelt SB, Tal AO, Scholz A, De Palma M, Patel S, Urbich C, Biswas SK, Murdoch C, Plate KH, Reiss Y, Lewis CE: Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res 2010, 70:5270-5280.
  • [70]Murdoch C, Tazzyman S, Webster S, Lewis CE: Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol 2007, 178:7405-7411.
  • [71]Pereira C, Schaer DJ, Bachli EB, Kurrer MO, Schoedon G: Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol 2008, 28:504-510.
  • [72]Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, Mucke L: Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A 1993, 90:10061-10065.
  • [73]Fan Y, Ye J, Shen F, Zhu Y, Yeghiazarians Y, Zhu W, Chen Y, Lawton MT, Young WL, Yang GY: Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab 2008, 28:90-98.
  • [74]Li A, Dubey S, Varney ML, Dave BJ, Singh RK: IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 2003, 170:3369-3376.
  • [75]Rosell A, Arai K, Lok J, He T, Guo S, Navarro M, Montaner J, Katusic ZS, Lo EH: Interleukin-1beta augments angiogenic responses of murine endothelial progenitor cells in vitro. J Cereb Blood Flow Metab 2009, 29:933-943.
  • [76]Kim J, Kim DW, Ha Y, Ihm MH, Kim H, Song K, Lee I: Wnt5a induces endothelial inflammation via beta-catenin-independent signaling. J Immunol 2010, 185:1274-1282.
  • [77]Smith K, Bui TD, Poulsom R, Kaklamanis L, Williams G, Harris AL: Up-regulation of macrophage wnt gene expression in adenoma-carcinoma progression of human colorectal cancer. Br J Cancer 1999, 81:496-502.
  • [78]Staton CA, Chetwood AS, Cameron IC, Cross SS, Brown NJ, Reed MW: The angiogenic switch occurs at the adenoma stage of the adenoma carcinoma sequence in colorectal cancer. Gut 2007, 56:1426-1432.
  • [79]Wyckoff JB, Segall JE, Condeelis JS: The collection of the motile population of cells from a living tumor. Cancer Res 2000, 60:5401-5404.
  • [80]Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW: Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol 2010, 184:702-712.
  • [81]Gergely K, Gerinec A: A consonant construction of the hyaloid and retinal vascular systems by the angiogenic process. Bratisl Lek Listy 2011, 112:143-151.
  • [82]Diez-Roux G, Argilla M, Makarenkova H, Ko K, Lang RA: Macrophages kill capillary cells in G1 phase of the cell cycle during programmed vascular regression. Development 1999, 126:2141-2147.
  • [83]Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK, Kurup S, Glass DA, Patel MS, Shu W, et al.: WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 2005, 437:417-421.
  • [84]Rao S, Lobov IB, Vallance JE, Tsujikawa K, Shiojima I, Akunuru S, Walsh K, Benjamin LE, Lang RA: Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development 2007, 134:4449-4458.
  • [85]Saint-Geniez M, D’Amore PA: Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol 2004, 48:1045-1058.
  • [86]Stefater JA 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AR, Fan J, Ajima R, Molkentin JD, Williams BO, et al.: Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 2011, 474:511-515.
  • [87]Ching W, Nusse R: A dedicated Wnt secretion factor. Cell 2006, 125:432-433.
  • [88]Kendall RL, Thomas KA: Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A 1993, 90:10705-10709.
  • [89]Shibuya M: Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int J Biochem Cell Biol 2001, 33:409-420.
  • [90]Crampton SP, Wu B, Park EJ, Kim JH, Solomon C, Waterman ML, Hughes CC: Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2. PLoS One 2009, 4:e7841.
  • [91]Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986, 315:1650-1659.
  • [92]Yamaguchi TP, Bradley A, McMahon AP, Jones S: A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 1999, 126:1211-1223.
  文献评价指标  
  下载次数:17次 浏览次数:9次