期刊论文详细信息
BMC Evolutionary Biology
New subfamilies of major intrinsic proteins in fungi suggest novel transport properties in fungal channels: implications for the host-fungal interactions
Ramasubbu Sankararamakrishnan2  Neel Duti Prabh1  Ravi Kumar Verma1 
[1]Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
[2]Center of Excellence for Chemical Biology, Indian Institute of Technology Kanpur, Kanpur 208016, India
关键词: Selective transport;    Plant-fungi symbiosis;    Membrane transport;    Intra-helical salt-bridge;    Host-pathogen interactions;    Aromatic/arginine selectivity filter;    Aquaporin;    Aquaglyceroporin;   
Others  :  1118020
DOI  :  10.1186/s12862-014-0173-4
 received in 2014-05-09, accepted in 2014-07-24,  发布年份 2014
PDF
【 摘 要 】

Background

Aquaporins (AQPs) and aquaglyceroporins (AQGPs) belong to the superfamily of Major Intrinsic Proteins (MIPs) and are involved in the transport of water and neutral solutes across the membranes. MIP channels play significant role in plant-fungi symbiotic relationship and are believed to be important in host-pathogen interactions in human fungal diseases. In plants, at least five major MIP subfamilies have been identified. Fungal MIP subfamilies include orthodox aquaporins and five subgroups within aquaglyceroporins. XIP subfamily is common to both plants and fungi. In this study, we have investigated the extent of diversity in fungal MIPs and explored further evolutionary relationships with the plant MIP counterparts.

Results

We have extensively analyzed the available fungal genomes and examined nearly 400 fungal MIPs. Phylogenetic analysis and homology modeling exhibit the existence of a new MIP cluster distinct from any of the known fungal MIP subfamilies. All members of this cluster are found in microsporidia which are unicellular fungal parasites. Members of this family are small in size, charged and have hydrophobic residues in the aromatic/arginine selectivity filter and these features are shared by small and basic intrinsic proteins (SIPs), one of the plant MIP subfamilies. We have also found two new subfamilies (δ and γ2) within the AQGP group. Fungal AQGPs are the most diverse and possess the largest number of subgroups. We have also identified distinguishing features in loops E and D in the newly identified subfamilies indicating their possible role in channel transport and gating.

Conclusions

Fungal SIP-like MIP family is distinct from any of the known fungal MIP families including orthodox aquaporins and aquaglyceroporins. After XIPs, this is the second MIP subfamily from fungi that may have possible evolutionary link with a plant MIP subfamily. AQGPs in fungi are more diverse and possess the largest number of subgroups. The aromatic/arginine selectivity filter of SIP-like fungal MIPs and the δ AQGPs are unique, hydrophobic in nature and are likely to transport novel hydrophobic solutes. They can be attractive targets for developing anti-fungal drugs. The evolutionary pattern shared with their plant counterparts indicates possible involvement of new fungal MIPs in plant-fungi symbiosis and host-pathogen interactions.

【 授权许可】

   
2014 Verma et al.; BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150206015937768.pdf 1481KB PDF download
Figure 7. 124KB Image download
Figure 6. 25KB Image download
Figure 5. 44KB Image download
Figure 4. 154KB Image download
Figure 3. 22KB Image download
Figure 2. 48KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Gomes D, Agasse A, Thiebaud P, Delrot S, Geros H, Chaumont F: Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 2009, 1788:1213-1228.
  • [2]Maurel C: Plant aquaporins: Novel functions and regulation properties. FEBS Lett 2007, 581:2227-2236.
  • [3]Wu B, Beitz E: Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 2007, 64:2413-2421.
  • [4]Bienert GP, Schussler MD, Jahn TP: Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 2008, 33:20-26.
  • [5]Abascal F, Irisarri I, Zardoya R: Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 2014, 1840:1468-1481.
  • [6]Gupta AB, Verma RK, Agarwal V, Vajpai M, Bansal V, Sankararamakrishnan R: MIPModDB: A central resource for the superfamily of major intrinsic proteins. Nucleic Acids Res 2012, 40:D362-D369.
  • [7]Borgnia MJ, Agre P: Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc Natl Acad Sci U S A 2001, 98:2888-2893.
  • [8]Rojek A, Praetorius J, Frokiaer J, Nielsen S, Fenton RA: A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 2008, 70:301-327.
  • [9]Ishibashi K, Hara S, Kondo S: Aquaporin water channels in mammals. Clin Exp Nephrol 2009, 13:107-117.
  • [10]Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P: The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 2001, 126:1358-1369.
  • [11]Johanson U, Gustavsson S: A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 2002, 19:456-461.
  • [12]Gupta AB, Sankararamakrishnan R: Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective.BMC Plant Biol 2009, 9:Art. no. 134.
  • [13]Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA: Aquaporins in kidney: From molecules to medicine. Physiol Rev 2002, 82:205-244.
  • [14]Papadopoulos MC, Verkman AS: Aquaporin water channels in the nervous system. Nature Rev Neurosci 2013, 14:265-277.
  • [15]Verkman AS: Aquaporins in clinical medicine. Annu Rev Med 2012, 63:303-316.
  • [16]Agre P, King LS, Yasui M, Guggino WB, Otterson OP, Fujiyoshi Y, Engel A, Nielsen S: Aquaporin water channels - from atomic structure to clinical medicine. J Physiol London 2002, 542:3-16.
  • [17]Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR: IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005, 202:473-477.
  • [18]Verkman AS, Hara-Chikuma M, Papadopoulos MC: Aquaporins - new players in cancer biology. J Mol Med 2008, 86:523-529.
  • [19]Verkman AS: Role of aquaporin water channels in eye function. Exp Eye Res 2003, 76:137-143.
  • [20]Binder DK, Nagelhus EA, Ottersen OP: Aquaporin-4 and epilepsy. Glia 2012, 60:1203-1214.
  • [21]Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, Kishida K, Inoue K, Kuriyama H, Nakamura T, Fushiki T, Kihara S, Shimomura L: Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci U S A 2005, 102:10993-10998.
  • [22]Loonen AJM, Knoers NVAM, van Os CH, Deen PMT: Aquaporin 2 mutations in nephrogenic diabetes insipidus. Seminars Nephrol 2008, 26:252-265.
  • [23]Maurel C, Verdoucq L, Luu DT, Santoni V: Plant aquaporins: Membrane channels with multiple integrated functions. Annu Rev Plant Biol 2008, 59:595-624.
  • [24]Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P: The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 2000, 1465:324-342.
  • [25]Tyerman SD, Niemietz CM, Bramley H: Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 2002, 25:173-194.
  • [26]Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M: Improving plant stress tolerance and yield production: Is the tonoplat aquaporin SITIP2;2 a key to isohydric to anisohydric conversion? New Phytol 2009, 181:651-661.
  • [27]Marjanovic Z, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiss M, Hampp R, Nehls U: Aquaporins in poplar: What a difference a symbiont makes! Planta 2005, 222:258-268.
  • [28]Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R: Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 2007, 68:122-129.
  • [29]Dowd C, Wilson LW, McFadden H: Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f.sp vasinfectum. Mol Plant Microbe Interact 2004, 17:654-667.
  • [30]Fadiel A, Isokpehi RD, Stambouli N, Hamza A, Benammar-Elgaaied A, Scalise TJ: Protozoan parasite aquaporins. Expert Rev Proteomics 2009, 6:199-211.
  • [31]Beitz E: Aquaporins from pathogenic protozoan parasites: structure, function and potential for chemotherapy. Biol Cell 2005, 97:373-383.
  • [32]Hansen M, Kun JFJ, Schultz JE, Beitz E: A single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasites. J Biol Chem 2002, 277:4874-4882.
  • [33]Montalvetti A, Rohloff P, Docampo R: A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem 2004, 279:38673-38682.
  • [34]Baker N, Glover L, Munday JC, Andres DA, Barrett MP, de Koning HP, Horn D: Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African tyrpanosomes. Proc Natl Acad Sci U S A 2012, 109:10996-11001.
  • [35]Kun JF, de Carvalho EG: Novel therapeutic targets in Plasmodium falciparum: aquaglyceroporins. Expert Opin Ther Targets 2009, 13:385-394.
  • [36]Bonfante P, Genre A: Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis.Nature Commn 2010, 1:Art. No. 48.
  • [37]Casieri L, Lahmidi NA, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D: Biotrophic transportome in mutualistic plant-fungal interactions. Mycorrhiza 2013, 23:597-625.
  • [38]Parniske M: Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev Microbiol 2008, 6:763-775.
  • [39]Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD: First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 2013, 197:617-630.
  • [40]Giovannetti M, Balestrini R, Volpe V, Guether M, Straub D, Costa A, Ludewig U, Bonfante P: Two putative aquaporin genes are differently expressed during arbuscular mycorrhizal symbiosis inLotus japonicus.BMC Plant Biol 2012, 12:Art. No: 186.
  • [41]Navarro-Rodenas A, Ruiz-Lozano JM, Kaldenhoff R, Morte A: The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO2 transport. Mol Plant-Microbe Interact 2012, 25:259-266.
  • [42]Lee SH, Calvo-Polanco M, Chung GC, Zwiazek JJ: Role of aquaporins in root water transport of ectomycorrhizal jack pine (Pinus banksiana) seedlings exposed to NaCl and fluoride. Plant Cell Environ 2010, 33:769-780.
  • [43]Aroca R, Porcel R, Ruiz-Lozano JM: How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 2007, 173:808-816.
  • [44]Dietz S, von Bulow J, Baker N, Nehls U: The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions. New Phytol 2011, 190:927-940.
  • [45]Aroca R, Bago A, Sutka M, Paz JA, Cano C, Amodeo G, Ruiz-Lozano JM: Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and nonstressed mycelium. Mol Plant Microbe Interact 2009, 22:1169-1178.
  • [46]Castle NA: Aquaporins as targets for drug discovery. Drug Disc Today 2005, 10:485-493.
  • [47]Kontoyiannis DP, Lewis RE: Antifungal drug resistance of pathogenic fungi. Lancet 2002, 359:1135-1144.
  • [48]Sanglard D: Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol 2002, 5:379-385.
  • [49]Ghosh K, Cappiello CD, McBride SM, Occi JL, Cali A, Takvorian PM, McDonald TV, Weiss LM: Functional characterization of a putative aquaporin from Encephalitozoon cuniculi, a microsporidia pathogenic to humans. Int J Parasitol 2006, 36:57-62.
  • [50]Pettersson N, Filipsson C, Becit E, Brive L, Hohmann S: Aquaporins in yeasts and filamentous fungi. Biol Cell 2005, 97:487-500.
  • [51]Xu H, Cooke JEK, Zwiazek JJ: Phylogenetic analysis of fungal aquaporins provide insight into their possible role in water transport of mycorrhizal associations. Botany-Botanique 2013, 91:495-504.
  • [52]Consortium TU: Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 2014, 42:D191-D198.
  • [53]Kirk PM, Cannon PF, Minter DW, Stalpers JA: Dictionary of the fungi. CAB International, Wallingford, U. K.; 2008.
  • [54]Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA: Discovery of novel intermediate forms redefines the fungal tree of life. Nature 2011, 474:200-203.
  • [55]Azad AK, Yoshikawa N, Ishikawa T, Sawa Y, Shibata H: Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs. Biochim Biophys Acta 1818, 2012:1-11.
  • [56]Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF: The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Botany 2011, 62:4391-4398.
  • [57]Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T: Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci U S A 2006, 103:269-274.
  • [58]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: A sequence logo generator. Genome Res 2004, 14:1186-1190.
  • [59]Bansal A, Sankararamakrishnan R: Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters.BMC Struct Biol 2007, 7:Art. No. 27.
  • [60]Verma RK, Jain A, Sankararamakrishnan R: Distinguishing features of aquaglyceroporin in Plasmodium falciparum: Comparative molecular dynamics simulations of three aquaporins.Biophys J 2012, 102:452A.
  • [61]Li H, Chen HN, Steinbronn C, Wu BH, Beitz E, Zeuthen T, Voth GA: Enhancement of proton conductance by mutations of the selectivity filter of aquaporin-1. J Mol Biol 2011, 407:607-620.
  • [62]Savage DF, O’Connell JD, Miercke LJW, Finer-Moore J, Stroud RM: Structural context shapes the aquaporin selectivity filter. Proc Natl Acad Sci U S A 2010, 107:17164-17169.
  • [63]Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F: Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 2011, 66:306-317.
  • [64]Hub JS, de Groot BL: Does CO2 permeate through aquaporin-1? Biophys J 2006, 91:842-848.
  • [65]Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M: Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 2005, 579:5814-5820.
  • [66]Graf FE, Ludin P, Wenzler T, Kaiser M, Brun R, Pyana PP, Buscher P, de Koning HP, Horn D, Maser P: Aquaporin 2 mutations in Trypanosoma brucei gambiense field isolates correlate with decreased susceptibility to pentamidine and melarsoprol.PLoS Neg Trop Dis 2013, 7:Art. No. e2475.
  • [67]Ohta E, Itoh T, Nemoto T, Kumagai J, Ko SBH, Ishibashi K, Ohno M, Uchida K, Ohta A, Sohara E, Uchida S, Sasaki S, Rai T: Pancreas-specific aquaporin 12 null mice showed increased susceptibility to caerulein-induced acute pancreatitis. Am J Physiol Cell Physiol 2009, 297:C1368-C1378.
  • [68]Itoh T, Rai T, Kuwahara M, Ko SBH, Uchida S, Sasaki S, Ishibashi K: Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commn 2005, 330:832-838.
  • [69]Nyblom M, Frick A, Wang Y, Ekvall M, Hallgren K, Hedfalk K, Neutze R, Tajkhorshid E, Tornroth-Horsefield S: Structural and functional analysis of SoPIP2;1 mutants adds insight into plant aquaporin gating. J Mol Biol 2009, 387:653-668.
  • [70]Yukutake Y, Tsuji S, Hirano Y, Adachi T, Takahashi T, Fujihara K, Agre P, Yasui M, Suematsu M: Mercury chloride decreases the water permeability of aquaporin-4-reconstituted proteoliposomes. Biol Cell 2008, 100:355-363.
  • [71]Yool AJ, Morelle J, Cnops Y, Verbavatz JM, Campbell EM, Beckett EAH, Booker GW, Flynn G, Devuyst O: AqF206 is a pharmacologic agonist of the water channel aquaporin-1. J Am Soc Nephrol 2013, 24:1045-1052.
  • [72]Yool AJ, Brown EA, Flynn GA: Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clin Exp Pharmacol Physiol 2010, 37:403-409.
  • [73]Frick A, Jarva M, Tornroth-Horsefield S: Structural basis for pH gating of plant aquaporins. FEBS Lett 2013, 587:989-993.
  • [74]Yu J, Yool AJ, Schulten K, Tajkhorshid E: Mechanism of gating and ion conductivity of a possible tetrameric pore in aquaporin-1. Structure 2006, 14:1411-1423.
  • [75]Yukutake Y, Yasui M: Regulation of water permeability through aquaporin-4. Neuroscience 2010, 168:885-891.
  • [76]Yukutake Y, Hirano Y, Suematsu M, Yasui M: Rapid and reversible inhibition of aquaporin-4 by zinc. Biochemistry 2009, 48:12059-12061.
  • [77]Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P: Structural mechanism of plant aquaporin gating. Nature 2006, 439:688-694.
  • [78]Didier ES: Microsporidiosis: An emerging and opportunistic infection in humans and animals. Acta Trop 2005, 94:61-76.
  • [79]Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG: NPS6, encoding a nonribosomal pepide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 2006, 18:2836-2853.
  • [80]Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [81]Li WZ, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22:1658-1659.
  • [82]Huang Y, Niu BF, Gao Y, Fu LM, Li WZ: CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 2010, 26:680-682.
  • [83]Simossis VA, Heringa J: PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res 2005, 33:W289-W294.
  • [84]Krogh A, Larsson B, von Heijne G, Sonnhammer ELL: Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 2001, 305:567-580.
  • [85]McGuffin LJ, Bryson K, Jones DT: The PSIPRED protein structure prediction server. Bioinformatics 2000, 16:404-405.
  • [86]Tamura K, Peterson D, Peterson N, Stecher G, Nel M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [87]Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD: Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003, 31:3497-3500.
  • [88]Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.Mol Systems Biol 2011, 7:Art. No. 539.
  • [89]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity.BMC Bioinformatics 2004, 5:Art. No. 113.
  • [90]Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993, 234:779-815.
  • [91]Eswar N, Eramian D, Webb B, Shen M-Y, Sali A: Protein structure modeling with MODELLER. Methods Mol Biol 2008, 426:145-159.
  • [92]Sui H, Han BG, Lee JK, Walian P, Jap BK: Structural basis of water-specific transport through the AQP1 water channel. Nature 2001, 414:872-878.
  • [93]Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P, Krucinski J, Stroud RM: Structure of a glycerol-conducting channel and the basis for its selectivity. Science 2000, 290:481-486.
  • [94]Lee JK, Kozono D, Remis J, Kitagawa Y, Agre P, Stroud RM: Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 A. Proc Natl Acad Sci U S A 2005, 102:18932-18937.
  • [95]Canutescu AA, Shelenkov AA, Dunbrack RL: A graph-theory algorithm for rapid protein side-chain prediction. Proc Natl Acad Sci U S A 2003, 12:2001-2014.
  • [96]Hess B, Kutzner C, van der Spoel D, Lindahl E: GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theoy Comput 2008, 4:435-447.
  • [97]Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 1993, 26:283-291.
  文献评价指标  
  下载次数:19次 浏览次数:9次