期刊论文详细信息
BMC Systems Biology
In silico modeling of the effects of alpha-synuclein oligomerization on dopaminergic neuronal homeostasis
Elias S Manolakos2  Kostas Vekrellis1  Leonidas Stefanis5  Maria Xilouri1  Evangelia Emmanouilidou1  Dimitrios Kalamatianos3  Eleftherios Ouzounoglou4 
[1] Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens 11527, Greece;Department of Informatics and Telecommunications, Graduate Program “Information Technologies in Medicine and Biology”, National and Kapodistrian University of Athens, Athens 15784, Greece;Division of Developmental Biology, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens 11527, Greece;In Silico Oncology Group, Laboratory of Microwaves and Fiber Optics, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, Zografou, 15780 Athens, Greece;Second Department of Neurology, University of Athens Medical School, Athens, Greece
关键词: In silico experiments;    Biomolecular reaction networks modeling;    Neurodegeneration;    Alpha-synuclein;    Parkinson’s disease;   
Others  :  866395
DOI  :  10.1186/1752-0509-8-54
 received in 2013-11-04, accepted in 2014-04-22,  发布年份 2014
PDF
【 摘 要 】

Background

Alpha-synuclein (ASYN) is central in Parkinson’s disease (PD) pathogenesis. Converging pieces of evidence suggest that the levels of ASYN expression play a critical role in both familial and sporadic Parkinson’s disease. ASYN fibrils are the main component of inclusions called Lewy Bodies (LBs) which are found mainly in the surviving neurons of the substantia nigra. Despite the accumulated knowledge regarding the involvement of ASYN in molecular mechanisms underlying the development of PD, there is much information missing which prevents understanding the causes of the disease and how to stop its progression.

Results

Using a Systems Biology approach, we develop a biomolecular reactions model that describes the intracellular ASYN dynamics in relation to overexpression, post-translational modification, oligomerization and degradation of the protein. Especially for the proteolysis of ASYN, the model takes into account the biological knowledge regarding the contribution of Chaperone Mediated Autophagy (CMA), macro-autophagic and proteasome pathways in the protein’s degradation. Importantly, inhibitory phenomena, caused by ASYN, concerning CMA (more specifically the lysosomal-associated membrane protein 2a, abbreviated as Lamp2a receptor, which is the rate limiting step of CMA) and the proteasome are carefully modeled. The model is validated by simulation studies of known experimental overexpression data from SH-SY5Y cells and the unknown model parameters are estimated either computationally or by experimental fitting. The calibrated model is then tested under three hypothetical intervention scenarios and in all cases predicts increased cell viability that agrees with experimental evidence. The biomodel has been annotated and is made available in SBML format.

Conclusions

The mathematical model presented here successfully simulates the dynamic phenomena of ASYN overexpression and oligomerization and predicts the biological system’s behavior in a number of scenarios not used for model calibration. It allows, for the first time, to qualitatively estimate the protein levels that are capable of deregulating proteolytic homeostasis. In addition, it can help form new hypotheses for intervention that could be tested experimentally.

【 授权许可】

   
2014 Ouzounoglou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727072412853.pdf 1632KB PDF download
132KB Image download
67KB Image download
106KB Image download
173KB Image download
106KB Image download
82KB Image download
80KB Image download
116KB Image download
【 图 表 】

【 参考文献 】
  • [1]Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schöls L, Riess O: Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998, 18:106-108.
  • [2]Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Iorio GD, Golbe LI, Nussbaum RL: Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276:2045-2047.
  • [3]Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atarés B, Llorens V, Tortosa EG, del Ser T, Muñoz DG, de Yebenes JG: The new mutation, E46K, of α-synuclein causes parkinson and Lewy body dementia. Ann Neurol 2004, 55:164-173.
  • [4]Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K: alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003, 302:841.
  • [5]Chartier-Harlin M-C, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destée A: Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004, 364:1167-1169.
  • [6]Ibáñez P, Bonnet A-M, Débarges B, Lohmann E, Tison F, Pollak P, Agid Y, Dürr A, Brice A: Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 2004, 364:1169-1171.
  • [7]Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Krüger R, Rocca WA, Schneider NK, Lesnick TG, Lincoln SJ, Hulihan MM, Aasly JO, Ashizawa T, Chartier-Harlin M-C, Checkoway H, Ferrarese C, Hadjigeorgiou G, Hattori N, Kawakami H, Lambert J-C, Lynch T, Mellick GD, Papapetropoulos S, Parsian A, Quattrone A, Riess O, Tan E-K, van Broeckhoven C: Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 2006, 296:661-670.
  • [8]Vekrellis K, Xilouri M, Emmanouilidou E, Stefanis L: Inducible over-expression of wild type alpha-synuclein in human neuronal cells leads to caspase-dependent non-apoptotic death. J Neurochem 2009, 109:1348-1362.
  • [9]Vekrellis K, Rideout HJ, Stefanis L: Neurobiology of alpha-synuclein. Mol Neurobiol 2004, 30:1-21.
  • [10]Kaylor J, Bodner N, Edridge S, Yamin G, Hong D-P, Fink AL: Characterization of oligomeric intermediates in alpha-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F alpha-synuclein. J Mol Biol 2005, 353:357-372.
  • [11]Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, Hyman BT, McLean PJ: Formation of toxic oligomeric α-synuclein species in living cells. PLoS One 2008, 3:e1867.
  • [12]Sultana Z, Paleologou KE, Al-Mansoori KM, Ardah MT, Singh N, Usmani S, Jiao H, Martin FL, Bharath MMS, Vali S, El-Agnaf OMA: Dynamic modeling of α-synuclein aggregation in dopaminergic neuronal system indicates points of neuroprotective intervention: experimental validation with implications for Parkinson’s therapy. Neuroscience 2011, 199:303-317.
  • [13]Leong SL, Cappai R, Barnham KJ, Pham CLL: Modulation of alpha-synuclein aggregation by dopamine: a review. Neurochem Res 2009, 34:1838-1846.
  • [14]Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L: Abberant α-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS One 2009, 4:e5515.
  • [15]Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu D-C, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM: Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 2008, 118:777-788.
  • [16]Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L: Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 2008, 283:23542-23556.
  • [17]Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D: Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004, 305:1292-1295.
  • [18]Emmanouilidou E, Stefanis L, Vekrellis K: Cell-produced alpha-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol Aging 2010, 31:953-968.
  • [19]Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC: α-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 2003, 278:25009-25013.
  • [20]Sneppen K, Lizana L, Jensen MH, Pigolotti S, Otzen D: Modeling proteasome dynamics in Parkinson’s disease. Phys Biol 2009, 6:036005.
  • [21]Zhang N-Y, Tang Z, Liu C-W: alpha-Synuclein protofibrils inhibit 26 S proteasome-mediated protein degradation: understanding the cytotoxicity of protein protofibrils in neurodegenerative disease pathogenesis. J Biol Chem 2008, 283:20288-20298.
  • [22]Lindersson E, Beedholm R, Højrup P, Moos T, Gai W, Hendil KB, Jensen PH: Proteasomal inhibition by alpha-synuclein filaments and oligomers. J Biol Chem 2004, 279:12924-12934.
  • [23]Nonaka T, Hasegawa M: A cellular model to monitor proteasome dysfunction by α-synuclein. Biochemistry (Mosc) 2009, 48:8014-8022.
  • [24]Proctor CJ, Tangeman PJ, Ardley HC: Modelling the role of UCH-L1 on protein aggregation in age-related neurodegeneration. PLoS One 2010, 5:e13175.
  • [25]Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L: Pathological roles of α-synuclein in neurological disorders. Lancet Neurol 2011, 10:1015-1025.
  • [26]Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M: Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci Off J Soc Neurosci 2007, 27:9220-9232.
  • [27]Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr: Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry (Mosc) 2001, 40:7812-7819.
  • [28]Kim C, Lee S-J: Controlling the mass action of alpha-synuclein in Parkinson’s disease. J Neurochem 2008, 107:303-316.
  • [29]Melachroinou K, Xilouri M, Emmanouilidou E, Masgrau R, Papazafiri P, Stefanis L, Vekrellis K: Deregulation of calcium homeostasis mediates secreted α-synuclein-induced neurotoxicity. Neurobiol Aging 2013, 34:2853-2865.
  • [30]Novère NL, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villéger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, et al.: The systems biology graphical notation. Nat Biotechnol 2009, 27:735-741.
  • [31]Funahashi A, Morohashi M, Kitano H, Tanimura N: Cell Designer: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 2003, 1:159-162.
  • [32]Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H: Cell designer 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 2008, 96:1254-1265.
  • [33]Bharathi P, Nagabhushan P, Rao KSJ: Mathematical approach to understand the kinetics of alpha-synuclein aggregation: relevance to Parkinson’s disease. Comput Biol Med 2008, 38:1084-1093.
  • [34]Yamakawa K, Izumi Y, Takeuchi H, Yamamoto N, Kume T, Akaike A, Takahashi R, Shimohama S, Sawada H: Dopamine facilitates alpha-synuclein oligomerization in human neuroblastoma SH-SY5Y cells. Biochem Biophys Res Commun 2010, 391:129-134.
  • [35]Gibson MA, Bruck J: Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 2000, 104:1876-1889.
  • [36]Gillespie DT: Exact stochastic simulation of coupled chemical reactions. J Phys Chem 1977, 81:2340-2361.
  • [37]Xilouri M, Brekk OR, Landeck N, Pitychoutis PM, Papasilekas T, Papadopoulou-Daifoti Z, Kirik D, Stefanis L: Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration. Brain 2013, 136:2130-2146.
  • [38]de la Fuente-Fernandez R, Schulzer M, Mak E, Kishore A, Calne DB: The role of the Lewy body in idiopathic Parkinsonism. Parkinsonism Relat Disord 1998, 4:73-77.
  • [39]Kramer ML, Schulz-Schaeffer WJ: Presynaptic α-synuclein aggregates, Not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci 2007, 27:1405-1410.
  • [40]Bergmann FT, Vallabhajosyula RR, Sauro HM: Computational tools for modeling protein networks. Curr Proteomics 2006, 3:181-197.
  • [41]Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U: COPASI—a COmplex PAthway SImulator. Bioinformatics 2006, 22:3067-3074.
  • [42]Baker SM, Schallau K, Junker BH: Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models. J Integr Bioinforma 2010, 7(3):133.
  • [43]Moles CG, Mendes P, Banga JR: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 2003, 13:2467-2474.
  • [44]Bäck T, Schwefel H-P: An overview of evolutionary algorithms for parameter optimization. Evol Comput 1993, 1:1-23.
  • [45]Runarsson TP, Yao X: Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 2000, 4:284-294.
  • [46]Kennedy J, Eberhart R: Particle swarm optimization. IEEE Int Conf Neural Netw 1995 Proc 1995, 4:1942-1948. vol.4
  • [47]Rodriguez N, Donizelli M, le Novère N: SBMLeditor: effective creation of models in the Systems Biology Markup language (SBML). BMC Bioinforma 2007, 8:79. BioMed Central Full Text
  文献评价指标  
  下载次数:81次 浏览次数:13次