期刊论文详细信息
BMC Medicine
Serum biomarkers for neurofibromatosis type 1 and early detection of malignant peripheral nerve-sheath tumors
Andreas Kurtz1  Nikola Holtkamp2  Victor F Mautner4  Lan Kluwe4  Birgit Sawitzki3  Su-Jin Park2 
[1] College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-742, Republic Korea;Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;Institute for Clinical Immunology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;Experimental Tumor Research, Phakomatoses, Department of Neurology, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
关键词: Malignant peripheral nerve-sheath tumor;    Cytokines;    Antibody array;    Serum biomarker;    Neurofibromatosis type 1;   
Others  :  857086
DOI  :  10.1186/1741-7015-11-109
 received in 2012-07-27, accepted in 2013-03-08,  发布年份 2013
PDF
【 摘 要 】

Background

Neurofibromatosis type 1 (NF1) is a hereditary tumor syndrome characterized by the development of benign nerve-sheath tumors, which transform to malignant peripheral nerve-sheath tumors (MPNST) in about 8 to 13% of patients with NF1. MPNST are invasive sarcomas with extremely poor prognosis, and their development may correlate with internal tumor load of patients with NF1. Because early identification of patients with NF1 at risk for developing MPNST should improve their clinical outcome, the aim of this study was to identify serum biomarkers for tumor progression in NF1, and to analyze their correlation with tumor type and internal tumor load.

Methods

We selected candidate biomarkers for NF1 by manually mining published data sources, and conducted a systematic screen of 56 candidate serum biomarkers using customized antibody arrays. Serum from 104 patients with NF1 with and without MPNST, and from 41 healthy control subjects, was analyzed. Statistical analysis was performed using the non-parametric Mann–Whitney U-test, followed by Bonferroni correction.

Results

Our analysis identified four markers (epidermal growth factor receptor, interferon-γ, interleukin-6, and tumor necrosis factor-α) for which significantly different serum concentrations were seen in patients with NF1 compared with healthy controls. Two markers (insulin-like growth factor binding protein 1 (IGFBP1) and regulated upon activation, normal T-cell expressed and secreted (RANTES)) showed significantly higher concentrations in patients with NF1 and MPNST compared with patients with NF1 without MPNST. A correlation with internal tumor load was found for IGFBP1.

Conclusion

Our study identified two serum markers with potential for early detection of patients with NF1 at risk for developing MPNST, and four markers that could distinguish between patients with NF1 and healthy subjects. Such markers may be useful as diagnostic tools to support the diagnosis of NF1 and for timely identification of MPNST. Moreover, the data suggest that there is a systemic increase in inflammatory cytokines independently of tumor load in patients with NF1.

【 授权许可】

   
2013 Park et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723064816352.pdf 685KB PDF download
47KB Image download
58KB Image download
58KB Image download
82KB Image download
【 图 表 】

【 参考文献 】
  • [1]Huson SM, Compston DA, Clark P: A genetic study of von Recklinghausen neurofibromatosis in south east Wales: I. Prevalence, fitness, mutation rate, and effect of parental transmission on severity. J Med Genet 1989, 26:704-711.
  • [2]Friedman JM, Gutmann DH, Maccollin M: Neurofibromatosis. Phenotype, Natural History and Pathogenesis. Balltimore: The Johns Hopkins University Press; 1999:110-118.
  • [3]Geller M, Bonalumi Filho A: Neurofibromatose: Clínica, Genética e Terapêutica. Rio de Janeiro: Guanabara Koogan; 2004.
  • [4]Mautner VF, Hartmann M, Kluwe L, Friedrich RE, Fünsterer C: MRI growth patterns of plexiform neurofibromas in patients with neurofibromatosis type 1. Neuroradiology 2006, 48:160-165.
  • [5]Ducatman B, Scheithauer B, Piepgras D: Malignant peripheral nerve sheath tumors: a clinicopathologic study of 120 cases. Cancer 1986, 57:2006-2021.
  • [6]Collin C, Godbold J, Hajdu S: Localized extremity soft tissue sarcoma: an analysis of factors affecting survival. J Clin Oncol 1987, 5:601-612.
  • [7]Ferner RE, Gutmann DH: International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis 1. Cancer Res 2002, 62:1573-1577.
  • [8]Packer RJ, Gutmann DH, Rubenstein A, Viskochil D, Zimmerman RA, Vezina G, Small J, Korf B: Plexiform neurofibromas in NF1: toward biologic-based therapy. Neurology 2002, 58:1461-1470.
  • [9]Wanebo J, Malik J, VandenBerg S, Wanebo H, Driessen N, Persing J: Malignant peripheral nerve sheath tumors: a clinicopathological study of 28 cases. Cancer 1993, 71:1247-1253.
  • [10]Friedrich RE, Keiner D, Hagel C: Expression of insulin-like growth-factor-1 receptor (IGF-1R) in peripheral nerve sheath tumors in neurofibromatosis type 1. Anticancer Res 2007, 27:2085-2090.
  • [11]Rasmussen SA, Yang Q, Friedman JM: Mortality in neurofibromatosis 1: an analysis using U.S. death certificates. Am J Hum Genet 2001, 68:1110-1118.
  • [12]Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A: Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 2002, 39:311-314.
  • [13]Ward BA, Gutmann DH: Neurofibromatosis 1: from lab bench to clinic. Pediatr Neurol 2005, 32:221-228.
  • [14]Algermissen B, Hermes B, Henz BM, Müller U, Berlien HP: Laser-induced weal and flare reactions: clinical aspects and pharmacological modulation. Br J Dermatol 2002, 146:863-868.
  • [15]Plotkin SR, Bredella MA, Cai W, Kassarjian A, Harris GJ, Esparza S, Merker VL, Munn LL, Muzikansky A, Askenazi M, Nguyen R, Wenzel R, Mautner VF: Quantitative assessment of whole-body tumor burden in adult patients with neurofibromatosis. PLoS One 2012, 7:e35711.
  • [16]Kurtz A, Martuza RL: Antiangiogenesis in neurofibromatosis 1. J Child Neurol 2002, 17:578-584. discussion 602–4, 646–51
  • [17]Lamba M, Veinot JP, Acharya V: Vascular and valvular involvement by neurofibromatosis. Pathology 2002, 34:380-383.
  • [18]Hamilton SJ, Friedman JM: Insights into the pathogenesis of neurofibromatosis 1 vasculopathy. Clin Genet 2000, 58:341-344.
  • [19]Arbiser JL, Flynn E, Barnhill RL: Analysis of vascularity of human neurofibromas. J Am Acad Dermatol 1998, 38:950-954.
  • [20]Mashour GA, Hernáiz P, Hartmann M, Mashour S, Zhang T, Scharf B, Felderhoff-Müse U, Sakuma S, Friedrich RE, Martuza RL, Mautner VF, Kurtz A: Circulating growth factor levels are associated with tumorigenesis in neurofibromatosis type 1. Clin Canc Res 2004, 10:5677-5683.
  • [21]Kolanczyk M, Mautner V, Kossler N, Nguyen R, Kühnisch J, Zemojtel T, Jamsheer A, Wegener E, Thurisch B, Tinschert S, Holtkamp N, Park SJ, Birch P, Kendler D, Harder A, Mundlos S, Kluwe L: MIA is a potential biomarker for tumour load in neurofibromatosis type 1. BMC Med 2011, 9:82. BioMed Central Full Text
  • [22]Hau P, Apfel R, Wiese P, Tschertner I, Blesch A, Bogdahn U: Melanoma-inhibiting activity (MIA/CD-RAP) is expressed in a variety of malignant tumors of mainly neuroectodermal origin. Anticancer Res 2002, 22:577-583.
  • [23]Hummel TR, Jessen WJ, Miller SJ, Kluwe L, Mautner VF, Wallace MR, Lázaro C, Page GP, Worley PF, Aronow BJ, Schorry EK, Ratner N: Gene expression analysis identifies potential biomarkers of neurofibromatosis type 1 including adrenomedullin. Clin Cancer Res 2010, 16:5048-5057.
  • [24]Staser K, Yang FC, Clapp DW: Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. Annu Rev Pathol 2012, 7:469-495.
  • [25]Le LQ, Parada LF: Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene 2007, 26:4609-4616.
  • [26]Brossier NM, Carroll SL: Genetically engineered mouse models shed new light on the pathogenesis of neurofibromatosis type I-related neoplasms of the peripheral nervous system. Brain Res Bull 2012, 88:58-71.
  • [27]Yang FC, Ingram DA, Chen S, Hingtgen CM, Ratner N, Monk KR, Clegg T, White H, Mead L, Wenning MJ, Williams DA, Kapur R, Atkinson SJ, Clapp DW: Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/− mast cells. J Clin Invest 2003, 112:1851-1861.
  • [28]Yang FC, Chen S, Clegg T, Li X, Morgan T, Estwick SA, Yuan J, Khalaf W, Burgin S, Travers J, Parada LF, Ingram DA, Clapp DW: Nf1+/− mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet 2006, 15:2421-2437.
  • [29]Theoharides TC, Conti P: Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 2004, 25:235-241.
  • [30]Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, Yang X, Knowles S, Horn W, Li Y, Zhang S, Yang Y, Vakili ST, Yu M, Burns D, Robertson K, Hutchins G, Parada LF, Clapp DW: Nf1-dependent tumors require a microenvironment containing Nf1+/− and c-kit-dependent bone marrow. Cell 2008, 135:437-448.
  • [31]Ferner RE, Huson SM, Thomas N, Moss C, Willshaw H, Evans DG, Upadhyaya M, Towers R, Gleeson M, Steiger C, Kirby A: Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet 2007, 44:81-88.
  • [32]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 2000, 25:25-29.
  • [33]Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D: GeneCards: integrating information about genes, proteins and diseases. Trends Genet 1997, 13:163.
  • [34]Yoshida Y, Adachi K, Yamamoto O: Local mast cell histamine and plasma histamine levels in neurofibromatosis type 1. Acta Derm Venereol 2010, 90:637-639.
  • [35]Lasater EA, Li F, Bessler WK, Estes ML, Vemula S, Hingtgen CM, Dinauer MC, Kapur R, Conway SJ, Ingram DA Jr: Genetic and cellular evidence of vascular inflammation in neurofibromin-deficient mice and humans. J Clin Invest 2010, 120:859-870.
  • [36]Kim HO, Kim HS, Youn JC, Shin EC, Park S: Serum cytokine profiles in healthy young and elderly population assessed using multiplexed bead-based immunoassays. J Transl Med 2011, 9:113. BioMed Central Full Text
  • [37]Krabbe KS, Pedersen M, Bruunsgaard H: Inflammatory mediators in the elderly. Exp Gerontol 2004, 39:687-699.
  • [38]Nowsheen S, Aziz K, Panayiotidis MI, Georgakilas AG: Molecular markers for cancer prognosis and treatment: Have we struck gold? Cancer Lett 2012, 327:142-152.
  • [39]Baay M, Brouwer A, Pauwels P, Peeters M, Lardon F: Tumor cells and tumor-associated macrophages: secreted proteins as potential targets for therapy. Clin Dev Immunol 2011, 2011:565187.
  • [40]Schall TJ, Bacon K, Toy KJ, Goeddel DV: Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990, 347:669-671.
  • [41]Luboshits G, Shina S, Kaplan O, Engelberg S, Nass D, Lifshitz-Mercer B, Chaitchik S, Keydar I, Ben-Baruch A: Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 1999, 59:4681-4687.
  • [42]Rajaram S, Baylink DJ, Mohan S: Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr Rev 1997, 18:801-831.
  • [43]Giovannucci E: Nutrition, insulin, insulin-like growth factors and cancer. Horm Metab Res 2003, 35:694-704.
  • [44]Wolpin BM, Meyerhardt JA, Chan AT, Ng K, Chan JA, Wu K, Pollak MN, Giovannucci EL, Fuchs CS: Insulin, the insulin-like growth factor axis, and mortality in patients with nonmetastatic colorectal cancer. J Clin Oncol 2009, 27:176-185.
  • [45]Tran TT, Medline A, Bruce WR: Insulin promotion of colon tumors in rats. Cancer Epidemiol Biomarkers Prev 1996, 5:1013-1015.
  • [46]Cunha KS, Barboza EP, Da Fonseca EC: Identification of growth hormone receptor in localised neurofibromas of patients with neurofibromatosis type 1. J Clin Pathol 2003, 56:758-763. J Neurooncol 2011; 102:71–80
  • [47]Rodrigues M, Blair H, Stockdale L, Griffith L, Wells A: Surface tethered epidermal growth factor protects proliferating and differentiating multipotential stromal cells from fasl induced apoptosis. Stem Cells 2013, 31:104-116.
  • [48]Williams JP, Wu J, Johansson G, Rizvi TA, Miller SC, Geiger H, Malik P, Li W, Mukouyama YS, Cancelas JA, Ratner N: Nf1 mutation expands an EGFR-dependent peripheral nerve progenitor that confers neurofibroma tumorigenic potential. Cell Stem Cell 2008, 3:658-669.
  • [49]Karube K, Nabeshima K, Ishiguro M, Harada M, Iwasaki H: cDNA microarray analysis of cancer associated gene expression profiles in malignant peripheral nerve sheath tumours. J Clin Pathol 2006, 59:160-165.
  • [50]Thomas SL, De Vries GH: Angiogenic expression profile of normal and neurofibromin-deficient human Schwann cells. Neurochem Res 2007, 32:1129-1141.
  • [51]Miller SJ, Li H, Rizvi TA, Huang Y, Johansson G, Bowersock J, Sidani A, Vitullo J, Vogel K, Parysek LM, DeClue JE, Ratner N: Brain lipid binding protein in axon-Schwann cell interactions and peripheral nerve tumorigenesis. Mol Cell Biol 2003, 23:2213-2224.
  • [52]Lee PR, Cohen JE, Tendi EA, Farrer R, DE Vries GH, Becker KG, Fields RD: Transcriptional profiling in an MPNST-derived cell line and normal human Schwann cells. Neuron Glia Biol 2004, 1:135-147.
  • [53]Bahuau M, Pelet A, Vidaud D, Lamireau T, LeBail B, Munnich A, Vidaud M, Lyonnet S, Lacombe D: GDNF as a candidate modifier in a type 1 neurofibromatosis (NF1) enteric phenotype. J Med Genet 2001, 38:638-643.
  • [54]Lévy P, Bièche I, Leroy K, Parfait B, Wechsler J, Laurendeau I, Wolkenstein P, Vidaud M, Vidaud D: Molecular profiles of neurofibromatosis type 1-associated plexiform neurofibromas: identification of a gene expression signature of poor prognosis. Clin Cancer Res 2004, 10:3763-3771.
  • [55]Nakayama J, Terao H: Gamma interferon directly inhibits the growth of neurofibroma cells in vitro. J Dermatol 2002, 29:556-561.
  • [56]Tierney EP, Tulac S, Huang ST, Giudice LC: Activation of the protein kinase A pathway in human endometrial stromal cells reveals sequential categorical gene regulation. Physiol Genomics 2003, 16:47-66.
  • [57]Tuskan RG, Tsang S, Sun Z, Baer J, Rozenblum E, Wu X, Munroe DJ, Reilly KM: Real-time PCR analysis of candidate imprinted genes on mouse chromosome 11 shows balanced expression from the maternal and paternal chromosomes and strain-specific variation in expression levels. Epigenetics 2008, 3:43-50.
  • [58]Park JI, Powers JF, Tischler AS, Strock CJ, Ball DW, Nelkin BD: GDNF-induced leukemia inhibitory factor can mediate differentiation via the MEK/ERK pathway in pheochromocytoma cells derived from nf1-heterozygous knockout mice. Exp Cell Res 2005, 303:79-88.
  • [59]Muir D: Differences in proliferation and invasion by normal, transformed and NF1 Schwann cell cultures are influenced by matrix metalloproteinase expression. Clin Exp Metastasis 1995, 13:303-314.
  • [60]Lévy P, Ripoche H, Laurendeau I, Lazar V, Ortonne N, Parfait B, Leroy K, Wechsler J, Salmon I, Wolkenstein P, Dessen P, Vidaud M, Vidaud D, Bièche I: Microarray-based identification of tenascin C and tenascin XB, genes possibly involved in tumorigenesis associated with neurofibromatosis type 1. Clin Cancer Res 2007, 13:398-407.
  • [61]Terzi A, Saglam EA, Barak A, Soylemezoglu F: The significance of immunohistochemical expression of Ki-67, p53, p21, and p16 in meningiomas tissue arrays. Pathol Res Pract 2008, 204:305-314.
  • [62]Cancer Genome Anatomy Project. http://cgap.nci.nih.gov/cgci.html webcite
  • [63]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-210.
  文献评价指标  
  下载次数:0次 浏览次数:2次