期刊论文详细信息
BMC Microbiology
In silico evolutionary analysis of Helicobacter pylori outer membrane phospholipase A (OMPLA)
Geir Bukholm1  Yoshio Yamaoka3  Tone Tannæs2  Hilde S Vollan2 
[1] Centre for Laboratory Medicine, Østfold Hospital Trust, Fredrikstad, Norway;Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Division of Medicine, Akershus University Hospital, University of Oslo, Oslo, Norway;Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA
关键词: Adaptation;    Biogeography;    Helicobacter pylori;    Outer membrane;    Phospholipase A;    pldA;    OMPLA;   
Others  :  1221758
DOI  :  10.1186/1471-2180-12-206
 received in 2012-02-13, accepted in 2012-08-31,  发布年份 2012
PDF
【 摘 要 】

Background

In the past decade, researchers have proposed that the pldA gene for outer membrane phospholipase A (OMPLA) is important for bacterial colonization of the human gastric ventricle. Several conserved Helicobacter pylori genes have distinct genotypes in different parts of the world, biogeographic patterns that can be analyzed through phylogenetic trees. The current study will shed light on the importance of the pldA gene in H. pylori. In silico sequence analysis will be used to investigate whether the bacteria are in the process of preserving, optimizing, or rejecting the pldA gene. The pldA gene will be phylogenetically compared to other housekeeping (HK) genes, and a possible origin via horizontal gene transfer (HGT) will be evaluated through both intra- and inter-species evolutionary analyses.

Results

In this study, pldA gene sequences were phylogenetically analyzed and compared with a large reference set of concatenated HK gene sequences. A total of 246 pldA nucleotide sequences were used; 207 were from Norwegian isolates, 20 were from Korean isolates, and 19 were from the NCBI database. Best-fit evolutionary models were determined with MEGA5 ModelTest for the pldA (K80 + I + G) and HK (GTR + I + G) sequences, and maximum likelihood trees were constructed. Both HK and pldA genes showed biogeographic clustering. Horizontal gene transfer was inferred based on significantly different GC contents, the codon adaptation index, and a phylogenetic conflict between a tree of OMPLA protein sequences representing 171 species and a tree of the AtpA HK protein for 169 species. Although a vast majority of the residues in OMPLA were predicted to be under purifying selection, sites undergoing positive selection were also found.

Conclusions

Our findings indicate that the pldA gene could have been more recently acquired than seven of the HK genes found in H. pylori. However, the common biogeographic patterns of both the HK and pldA sequences indicated that the transfer occurred long ago. Our results indicate that the bacterium is preserving the function of OMPLA, although some sites are still being evolutionarily optimized.

【 授权许可】

   
2012 Vollan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803133646265.pdf 519KB PDF download
Figure 4 . 100KB Image download
Figure 3 . 96KB Image download
Figure 2 . 142KB Image download
Figure 1 . 93KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

【 参考文献 】
  • [1]Yoshiyama H, Nakazawa T: Unique mechanism of Helicobacter pylori for colonizing the gastric mucus. Microbes Infect 2000, 2(1):55-60.
  • [2]Bergman M, del Prete G, van Kooyk Y, Appelmelk B: Helicobacter pylori phase variation, immune modulation and gastric autoimmunity. Nat Rev Microbiol 2006, 4(2):151-159.
  • [3]Sipponen P, Hyvärinen H, Seppälä K, Blaser M: Review article: pathogenesis of the transformation from gastritis to malignancy. Aliment Pharmacol Ther 1998, 12(Suppl 1):61-71.
  • [4]Israel D, Peek RJ: The role of persistence in Helicobacter pylori pathogenesis. Curr Opin Gastroenterol 2006, 22(1):3-7.
  • [5]Kusters J, van Vliet A, Kuipers E: Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 2006, 19(3):449-449.
  • [6]Covacci A, Rappuoli R: Helicobacter pylori: molecular evolution of a bacterial quasi-species. Curr Opin Microbiol 1998, 1(1):96-102.
  • [7]Kuipers E, Israel D, Kusters J, Gerrits M, Weel J, van Der Ende A, van Der Hulst R, Wirth H, Höök-Nikanne J, Thompson S, et al.: Quasispecies development of Helicobacter pylori observed in paired isolates obtained years apart from the same host. J Infect Dis 2000, 181(1):273-282.
  • [8]Nedenskov-Sørensen P, Bukholm G, Bøvre K: Natural competence for genetic transformation in Campylobacter pylori. J Infect Dis 1990, 161(2):365-366.
  • [9]Smeets L, Kusters J: Natural transformation in Helicobacter pylori: DNA transport in an unexpected way. Trends Microbiol 2002, 10(4):159-162.
  • [10]McClain MS, Shaffer CL, Israel DA, Peek RMJ, Cover TL: Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer. BMC Genomics 2009, 10:3. BioMed Central Full Text
  • [11]Falush D, Wirth T, Linz B, Pritchard J, Stephens M, Kidd M, Blaser M, Graham D, Vacher S, Perez-Perez G, et al.: Traces of human migrations in Helicobacter pylori populations. Science 2003, 299(5612):1582-1585.
  • [12]Linz B, Balloux F, Moodley Y, Manica A, Liu H, Roumagnac P, Falush D, Stamer C, Prugnolle F, van der Merwe S, et al.: An African origin for the intimate association between humans and Helicobacter pylori. Nature 2007, 445(7130):915-918.
  • [13]Yamaoka Y, Kato M, Asaka M: Geographic differences in gastric cancer incidence can be explained by differences between Helicobacter pylori strains. Intern Med 2008, 47(12):1077-1083.
  • [14]Zhong Q, Shao S, Cui L, Mu R, Ju X, Dong S: Type IV secretion system in Helicobacter pylori: a new insight into pathogenicity. Chin Med J (Engl) 2007, 120(23):2138-2142.
  • [15]Olbermann P, Josenhans C, Moodley Y, Uhr M, Stamer C, Vauterin M, Suerbaum S, Achtman M, Linz B: A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet 2010, 6(8):e1001069.
  • [16]Dorrell N, Martino M, Stabler R, Ward S, Zhang Z, McColm A, Farthing M, Wren B: Characterization of Helicobacter pylori PldA, a phospholipase with a role in colonization of the gastric mucosa. Gastroenterology 1999, 117(5):1098-1104.
  • [17]Ziprin R, Young C, Byrd J, Stanker L, Hume M, Gray S, Kim B, Konkel M: Role of Campylobacter jejuni potential virulence genes in cecal colonization. Avian Dis 2001, 45(3):549-557.
  • [18]Tannaes T, Bukholm I, Bukholm G: High relative content of lysophospholipids of Helicobacter pylori mediates increased risk for ulcer disease. FEMS Immunol Med Microbiol 2005, 44(1):17-23.
  • [19]Kawai M, Furuta Y, Yahara K, Tsuru T, Oshima K, Handa N, Takahashi N, Yoshida M, Azuma T, Hattori M, et al.: Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. BMC Microbiol 2011, 16(11):104.
  • [20]de Sablet T, Piazuelo M, Shaffer C, Schneider B, Asim M, Chaturvedi R, LE B, Sicinschi L, Delgado A, Mera R, et al.: Phylogeographic origin of Helicobacter pylori is a determinant of gastric cancer risk. Gut 2011, 60(9):1189-1195.
  • [21]Nagiyev T, Yula E, Abayli B, Koksal F: Prevalence and genotypes of Helicobacter pylori in gastric biopsy specimens from patients with gastroduodenal pathologies in the Cukurova region of Turkey. J Clin Microbiol 2009, 47(12):4150-4153.
  • [22]Puigbò P, Bravo I, Garcia-Vallve S: CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 2008, 3:38. BioMed Central Full Text
  • [23]Brok R, Boots A, Dekker N, Verheij H, Tommassen J: Sequence comparison of outer membrane phospholipases A: implications for structure and for the catalytic mechanism. Res Microbiol 1998, 149(10):703-710.
  • [24]Bernersen B, Johnsen R, Bostad L, Straume B, Sommer A, Burhol P: Is Helicobacter pylori the cause of dyspepsia? BMJ 1992, 304(6837):1276-1279.
  • [25]Wernegreen J, Kauppinen S, Degnan P: Slip into something more functional: selection maintains ancient frameshifts in homopolymeric sequences. Mol Biol Evol 2010, 27(4):833-839.
  • [26]Esteban D, Hutchinson A: Genes in the terminal regions of orthopoxvirus genomes experience adaptive molecular evolution. BMC Genomics 2011, 12:261. BioMed Central Full Text
  • [27]Petersen L, Bollback J, Dimmic M, Hubisz M, Nielsen R: Genes under positive selection in Escherichia coli. Genome Res 2007, 17(9):1336-1343.
  • [28]Farfán M, Miñana-Galbis D, Fusté M, Lorén JG: Divergent evolution and purifying selection of the flaA gene sequences in Aeromonas. Biol Direct 2009, 4:23. BioMed Central Full Text
  • [29]Jiggins F, Hurst G, Yang Z: Host-symbiont conflicts: positive selection on an outer membrane protein of parasitic but not mutualistic Rickettsiaceae. Mol Biol Evol 2002, 19(8):1341-1349.
  • [30]Snijder H, Ubarretxena-Belandia I, Blaauw M, Kalk K, Verheij H, Egmond M, Dekker N, Dijkstra B: Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 1999, 401(6754):717-721.
  • [31]Gancz H, Censini S, Merrell D: Iron and pH homeostasis intersect at the level of Fur regulation in the gastric pathogen Helicobacter pylori. Infect Immun. Infect Immun 2006, 74(1):602-614.
  • [32]Reid A, Pandey R, Palyada K, Whitworth L: E D, Stintzi A: Identification of Campylobacter jejuni genes contributing to acid adaptation by transcriptional profiling and genome-wide mutagenesis. Appl Environ Microbiol 2008, 74(5):1598-1612.
  • [33]Tannaes T, Dekker N, Bukholm G, Bijlsma J, Appelmelk B: Phase variation in the Helicobacter pylori phospholipase A gene and its role in acid adaptation. Infect Immun 2001, 69(12):7334-7340.
  • [34]Padhi A, Verghese B, Otta S: Detecting the form of selection in the outer membrane protein C of Enterobacter aerogenes strains and Salmonella species. Microbiol Res 2009, 164(3):282-289.
  • [35]Oleastro M, Cordeiro R, Ménard A, Yamaoka Y, Queiroz D, Mégraud F, Monteiro L: Allelic diversity and phylogeny of homB, a novel co-virulence marker of Helicobacter pylori. BMC Microbiol 2009, 9:248. BioMed Central Full Text
  • [36]Pride D, Blaser M: Concerted evolution between duplicated genetic elements in Helicobacter pylori. J Mol Biol 2002, 316(3):629-642.
  • [37]Cao P, Lee K, Blaser M, Cover T: Analysis of hopQ alleles in East Asian and Western strains of Helicobacter pylori. FEMS Microbiol Lett 2005, 251(1):37-43.
  • [38]Yamaoka Y, Orito E, Mizokami M, Gutierrez O, Saitou N, Kodama T, Osato M, Kim J, Ramirez F, Mahachai V, et al.: Helicobacter pylori in North and South America before Columbus. FEBS Lett 2002, 517(1–3):180-184.
  • [39]Avasthi T, Devi S, Taylor T, Kumar N, Baddam R, Kondo S, Suzuki Y, Lamouliatte H, Mégraud F, Ahmed N: Genomes of two chronological isolates (Helicobacter pylori 2017 and 2018) of the West African Helicobacter pylori strain 908 obtained from a single patient. J Bacteriol 2011, 193(13):3385-3386.
  • [40]Devi S, Ahmed I, Khan A, Rahman S, Alvi A, Sechi L, Ahmed N: Genomes of Helicobacter pylori from native Peruvians suggest admixture of ancestral and modern lineages and reveal a western type cag-pathogenicity island. BMC Genomics 2006, 27(7):191.
  • [41]Salaün L, Saunders N: Population-associated differences between the phase variable LPS biosynthetic genes of Helicobacter pylori. BMC Microbiol 2006, 6:79. BioMed Central Full Text
  • [42]Penn K, Jenkins C, Nett M, Udwary D, Gontang E, McGlinchey R, Foster B, Lapidus A, Podell S, Allen E, et al.: Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J 2009, 3(10):1193-1203.
  • [43]Raiford D, Krane D, Doom T, Raymer M: Automated isolation of translational efficiency bias that resists the confounding effect of GC(AT)-content. IEEE/ACM Trans Comput Biol Bioinform 2010, 7(2):238.
  • [44]Lafay B, Atherton J, Sharp P: Absence of translationally selected synonymous codon usage bias in Helicobacter pylori. Microbiology 2000, 146(Pt 4):851-860.
  • [45]Anisimova M, Gascuel O: Approximate likelihood ratio test for branchs: a fast, accurate and powerful alternative. Syst Biol 2006, 55(4):539-552.
  • [46]Haggerty L, Martin F, Fitzpatrick D, McInerney J: Gene and genome trees conflict at many levels. Phil Trans R Soc B 2009, 364(1527):2209-2219.
  • [47]Wernersson R, Pedersen A: RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 2003, 31(13):3537-3539.
  • [48]Yamaoka Y, Kodama T, Kashima K, Graham D, Sepulveda A: Variants of the 3' Region of the cagA gene in Helicobacter pylori isolates from patients with different H. pylori-associated diseases. J Clin Microbiol 1998, 36(8):2258-2263.
  • [49]Atherton J, Cao P, Peek RJ, Tummuru M, Blaser M, Cover T: Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem 1995, 270(30):17771-17777.
  • [50]Larkin M, Blackshields G, Brown N, Chenna RMP, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: ClustalW and ClustalX version 2. Bioinformatics 2007, 23(21):2947-2948.
  • [51]Hall T: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999, 41:95-98.
  • [52]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011, 28:2731-2739.
  • [53]Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
  • [54]Felsenstein J: PHYLIP (Phylogeny Inference Package) version 3.6. In Distributed by the author. Department of Genome Sciences, University of Washington, Seattle; 2004.
  • [55]Puigbo P, Garcia-Vallve S, McInerney J: TOPD/FMTS: a new software to compare phylogenetic trees. Bioinformatics 2007, 23:1556-1558.
  • [56]Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16(2):111-120.
  • [57]Pride D: SWAAP Version 1.0 -Sliding windows alignment analysis program: a tool for analyzing patterns of substitutions and similarity in multiple alignments. Distributed by the author 2000.
  • [58]Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999, 27(1):29-34.
  • [59]Wu CH, Huang H, Arminski L, Castro-Alvear J, Chen Y, Hu ZZ, Ledley RS, Lewis KC, Mewes HW, Orcutt BC, et al.: The Protein Information Resource: an integrated public resource of functional annotation of proteins. Nucleic acids research 2002, 30(1):35-37.
  • [60]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9(4):286-298.
  • [61]Waterhouse A, Procter J, Martin D, Clamp M, Barton G: Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25(9):1189-1191.
  • [62]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17:540-552.
  • [63]Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986, 3(5):418-426.
  • [64]Ziheng Y: PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [65]Yang Z, Nielsen R, Goldman N, Pedersen A: Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 2000, 155(1):431-449.
  • [66]Fares M, Byrne K, Wolfe K: Rate asymmetry after genome duplication causes substantial long-branch attraction artifacts in the phylogeny of Saccharomyces species. Mol Biol Evol 2006, 23(2):245-253.
  • [67]Yang Z, Wong WNR: Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 2005, 22:1107-1118.
  文献评价指标  
  下载次数:0次 浏览次数:3次