期刊论文详细信息
BMC Genomics
The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis
Lyudmila V Dergunova2  Nikolay F Myasoedov3  Veronika I Skvortsova2  Svetlana A Limborska2  Oksana V Povarova1  Veronika G Dmitrieva3  Ekaterina V Medvedeva3 
[1] Faculty of Medicine, Moscow State University n/a M.V. Lomonosov, Moscow, Russian Federation;Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russian Federation;Human Molecular Genetics Department, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
关键词: Immunoglobulins;    Immune cells;    Gene expression;    Expression Beadchip gene array;    Focal cerebral ischemia;    Pro-Gly-Pro;    Semax;   
Others  :  1217647
DOI  :  10.1186/1471-2164-15-228
 received in 2013-06-14, accepted in 2014-03-18,  发布年份 2014
PDF
【 摘 要 】

Background

The nootropic neuroprotective peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) has proved efficient in the therapy of brain stroke; however, the molecular mechanisms underlying its action remain obscure. Our genome-wide study was designed to investigate the response of the transcriptome of ischemized rat brain cortex tissues to the action of Semax in vivo.

Results

The gene-expression alteration caused by the action of the peptide Semax was compared with the gene expression of the “ischemia” group animals at 3 and 24 h after permanent middle cerebral artery occlusion (pMCAO). The peptide predominantly enhanced the expression of genes related to the immune system. Three hours after pMCAO, Semax influenced the expression of some genes that affect the activity of immune cells, and, 24 h after pMCAO, the action of Semax on the immune response increased considerably. The genes implicated in this response represented over 50% of the total number of genes that exhibited Semax-induced altered expression. Among the immune-response genes, the expression of which was modulated by Semax, genes that encode immunoglobulins and chemokines formed the most notable groups.

In response to Semax administration, 24 genes related to the vascular system exhibited altered expression 3 h after pMCAO, whereas 12 genes were changed 24 h after pMCAO. These genes are associated with such processes as the development and migration of endothelial tissue, the migration of smooth muscle cells, hematopoiesis, and vasculogenesis.

Conclusions

Semax affects several biological processes involved in the function of various systems. The immune response is the process most markedly affected by the drug. Semax altered the expression of genes that modulate the amount and mobility of immune cells and enhanced the expression of genes that encode chemokines and immunoglobulins. In conditions of rat brain focal ischemia, Semax influenced the expression of genes that promote the formation and functioning of the vascular system.

The immunomodulating effect of the peptide discovered in our research and its impact on the vascular system during ischemia are likely to be the key mechanisms underlying the neuroprotective effects of the peptide.

【 授权许可】

   
2014 Medvedeva et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150707172453970.pdf 1029KB PDF download
Figure 3. 120KB Image download
Figure 2. 97KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Liu S, Levine S, Winn H: Targeting ischemic penumbra Part I: from pathophysiology to therapeutic strategy. J Exp Stroke Transl Med 2010, 3:47-55.
  • [2]Kaplan AI, Koshelev VB, Nezavibat’ko VN, Ashmarin IP: Increased resistance to hypoxia effected by the neuropeptide preparation SEMAX. Fiziol Cheloveka 1992, 18:104-107.
  • [3]Storozhevykh TP, Tukhbatova GR, Senilova YE, Pinelis VG, Andreeva LA, Myasoyedov NF: Effects of semax and its Pro-Gly-Pro fragment on calcium homeostasis of neurons and their survival under conditions of glutamate toxicity. Bull Exp Biol Med 2007, 143:601-604.
  • [4]Bashkatova VG, Koshelev VB, Fadyukova OE, Alexeev AA, Vanin AF, Rayevsky KS, Ashmarin IP, Armstrong DM: Novel synthetic analogue of ACTH 4–10 (Semax) but not glycine prevents the enhanced nitric oxide generation in cerebral cortex of rats with incomplete global ischemia. Brain Res 2001, 894:145-149.
  • [5]Gusev EI, Skvortsova VI: Brain ischemia. 1st edition. Moscow: Meditsina; 2002.
  • [6]Polunin GS, Nurieva SM, Baiandin DL, Sheremet NL, Andreeva LA: Evaluation of therapeutic effect of new Russian drug semax in optic nerve disease. Vestn Oftalmol 2000, 116:15-18.
  • [7]De Wied D: Neuropeptides in learning and memory processes. Behav Brain Res 1997, 83:83-90.
  • [8]Dmitrieva VG, Povarova OV, Skvortsova VI, Limborska SA, Myasoedov NF, Dergunova LV: Semax and Pro-Gly-Pro activate the transcription of neurotrophins and their receptor genes after cerebral ischemia. Cell Mol Neurobiol 2010, 30:71-79.
  • [9]Stavchansky VV, Yuzhakov VV, Botsina AY, Skvortsova VI, Bondurko LN, Tsyganova MG, Limborska SA, Myasoedov NF, Dergunova LV: The effect of Semax and its C-end peptide PGP on the morphology and proliferative activity of rat brain cells during experimental ischemia: a pilot study. J Mol Neurosci 2011, 45:177-185.
  • [10]Gusev EI, Skvortsova VI, Miasoedov NF, Nezavibat’ko VN, Zhuravleva EI, Vanichkin AV: Effectiveness of semax in acute period of hemispheric ischemic stroke (a clinical and electrophysiological study). Zhurnal nevrologii i psikhiatrii imeni SS Korsakova / Ministerstvo zdravookhraneniia i meditsinskoĭ promyshlennosti Rossiĭskoĭ Federatsii, Vserossiĭskoe obshchestvo nevrologov [i] Vserossiĭskoe obshchestvo psikhiatrov 1997, 97:26-34.
  • [11]Miasoedova NF, Skvortsova VI, Nasonov EL, Zhuravleva EI, Grivennikov IA, Arsen’eva EL, Sukhanov II: Investigation of mechanisms of neuro-protective effect of semax in acute period of ischemic stroke. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova / Ministerstvo zdravookhraneniia i meditsinskoĭ promyshlennosti Rossiĭskoĭ Federatsii, Vserossiĭskoe obshchestvo nevrologov [i] Vserossiĭskoe obshchestvo psikhiatrov 1999, 99:15-19.
  • [12]Ingenuity® Systems [http://www.ingenuity.com webcite]
  • [13]Lipton P: Ischemic cell death in brain neurons. Physiol Rev 1999, 79:1431-1568.
  • [14]Felger JC, Abe T, Kaunzner UW, Gottfried-Blackmore A, Gal-Toth J, McEwen BS, Iadecola C, Bulloch K: Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain Behav Immun 2010, 24:724-737.
  • [15]Zozulya A, Clarkson B, Ortler S: The role of dendritic cells in CNS autoimmunity. J Mol Med 2010, 88:535-544.
  • [16]Kostulas N: Dendritic cells Are present in ischemic brain after permanent middle cerebral artery occlusion in the Rat. Stroke 2002, 33:1129-1134.
  • [17]Iadecola C, Alexander M: Cerebral ischemia and inflammation. Curr Opin Neurol 2001, 14:89-94.
  • [18]Yilmaz G, Arumugam TV, Stokes KY, Granger DN: Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 2006, 113:2105-2112.
  • [19]Jin R, Yang G, Li G: Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010, 87:779-789.
  • [20]Emerich DF, Dean RL, Bartus RT: The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp Neurol 2002, 173:168-181.
  • [21]Xin J, Mesnard NA, Beahrs T, Wainwright DA, Serpe CJ, Alexander TD, Sanders VM, Jones KJ: CD4+ T cell-mediated neuroprotection is independent of T cell-derived BDNF in a mouse facial nerve axotomy model. Brain Behav Immun 2012, 26:886-890.
  • [22]Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M: Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999, 5:49-55.
  • [23]Arumugam TV, Selvaraj PK, Woodruff TM, Mattson MP: Targeting ischemic brain injury with intravenous immunoglobulin. Expert Opin Ther Targets 2008, 12:19-29.
  • [24]Walberer M, Nedelmann M, Ritschel N, Mueller C, Tschernatsch M, Stolz E, Bachmann G, Blaes F, Gerriets T: Intravenous immunoglobulin reduces infarct volume but not edema formation in acute stroke. Neuroimmunomodulation 2010, 17:97-102.
  • [25]De Haas AH, Van Weering HRJ, De Jong EK, Boddeke HWGM, Biber KPH: Neuronal chemokines: versatile messengers in central nervous system cell interaction. Mol Neurobiol 2007, 36:137-151.
  • [26]Bajetto A, Bonavia R, Barbero S, Schettini G: Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 2002, 82:1311-1329.
  • [27]Minami M, Satoh M: Chemokines and their receptors in the brain: Pathophysiological roles in ischemic brain injury. Life Sci 2003, 74:321-327.
  • [28]Rostène W, Dansereau M-A, Godefroy D, Van Steenwinckel J, Reaux-Le Goazigo A, Mélik-Parsadaniantz S, Apartis E, Hunot S, Beaudet N, Sarret P: Neurochemokines: a menage a trois providing new insights on the functions of chemokines in the central nervous system. J Neurochem 2011, 118:680-694.
  • [29]Jaerve A, Müller HW: Chemokines in CNS injury and repair. Cell Tissue Res 2012, 349:229-248.
  • [30]Nelson TE, Gruol DL: The chemokine CXCL10 modulates excitatory activity and intracellular calcium signaling in cultured hippocampal neurons. J Neuroimmunol 2004, 156:74-87.
  • [31]Van Gassen KLI, Netzeband JG, De Graan PNE, Gruol DL: The chemokine CCL2 modulates Ca2+ dynamics and electrophysiological properties of cultured cerebellar Purkinje neurons. Eur J Neurosci 2005, 21:2949-2957.
  • [32]Astashkin EI, Bespalova YB, Grivennikov IA, Smirnov ON, Glezer MG, Grachev SV, Myasoedov NF: Effects of Semax on Ca2+ responses of human neutrophils. Dokl Biol Sci 2000, 374:536-538.
  • [33]Szydlowska K, Tymianski M: Calcium, ischemia and excitotoxicity. Cell Calcium 2010, 47:122-129.
  • [34]Sattler R, Charlton MP, Hafner M, Tymianski M: Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem 1998, 71:2349-2364.
  • [35]Dolga AM, Terpolilli N, Kepura F, Nijholt IM, Knaus H-G, D’Orsi B, Prehn JHM, Eisel ULM, Plant T, Plesnila N, Culmsee C: KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. Cell Death Differ 2011, 2:e147.
  • [36]Liao Y, Kristiansen A-M, Oksvold CP, Tuvnes FA, Gu N, Rundén-Pran E, Ruth P, Sausbier M, Storm JF: Neuronal Ca2 + −activated K + channels limit brain infarction and promote survival. PLoS One 2010, 5:e15601.
  • [37]Iadecola C, Anrather J: The immunology of stroke: from mechanisms to translation. Nat Med 2012, 17:796-808.
  • [38]Glezer I, Simard AR, Rivest S: Neuroprotective role of the innate immune system by microglia. Neuroscience 2007, 147:867-883.
  • [39]Kerschensteiner M, Meinl E, Hohlfeld R: Neuro-immune crosstalk in CNS diseases. Neuroscience 2009, 158:1122-1132.
  • [40]McCombe PA, Read SJ: Immune and inflammatory responses to stroke: good or bad? Int J Stroke 2008, 3:254-265.
  • [41]Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D: Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 2011, 10:471-480.
  • [42]Shichita T, Ago T, Kamouchi M, Kitazono T, Yoshimura A, Ooboshi H: Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J Neurochem 2012, 123(Suppl):29-38.
  • [43]Garmanchuk LV, Perepelitsyna EM, Sidorenko MV, Makarenko AN, Kul’chikov AE: Cytoprotective effect of neuropeptides on immunocompetent cells (in vitro study). Eksperimental’naia i klinicheskaia farmakologiia 2009, 72:28-32.
  • [44]Delgado M, Ganea D: Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids 2011, 12:323-332.
  • [45]Becker KJ: Modulation of the postischemic immune response to improve stroke outcome. Stroke 2010, 41(10 Suppl):S75-S78.
  • [46]Liman TG, Endres M: New vessels after stroke: postischemic neovascularization and regeneration. Cerebrovasc Dis 2012, 33:492-499.
  • [47]Silvestre J-S, Mallat Z, Tedgui A, Lévy BI: Post-ischaemic neovascularization and inflammation. Cardiovasc Res 2008, 78:242-249.
  • [48]Caolo V, Molin DGM, Post MJ: Notch regulation of hematopoiesis, endothelial precursor cells, and blood vessel formation: orchestrating the vasculature. Stem Cells Int 2012, 2012:805602.
  • [49]Sánchez M, Göttgens B, Sinclair AM, Stanley M, Begley CG, Hunter S, Green AR: An SCL 3’ enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors. Dev (Cambridge, England) 1999, 126:3891-3904.
  • [50]Coultas L, Bouillet P, Stanley EG, Brodnicki TC, Adams JM, Strasser A: Proapoptotic BH3-only Bcl-2 family member Bik/Blk/Nbk is expressed in hemopoietic and endothelial cells but is redundant for their programmed death. Mol Cell Biol 2004, 24:1570-1581.
  • [51]Dmitrieva VG, Torshina EV, Yuzhakov VV, Povarova OV, Skvortsova VI, Limborska SA, Dergunova LV: Expression of sphingomyelin synthase 1 gene in rat brain focal ischemia. Brain Res 2008, 1188:222-227.
  • [52]Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD: A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 1986, 17:738-743.
  • [53]Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT: Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 2009, 276:13-26.
  • [54]Astrup J, Siesjö BK, Symon L: Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 1981, 12:723-725.
  • [55]Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162:156-159.
  • [56]ArrayExpress EMBL-EBI [http://www.ebi.ac.uk/arrayexpress/ webcite]
  文献评价指标  
  下载次数:6次 浏览次数:4次