期刊论文详细信息
BMC Genetics
Development of SSR markers and genetic diversity analysis in enset (Ensete ventricosum (Welw.) Cheesman), an orphan food security crop from Southern Ethiopia
Marcello Catellani3  Mario Enrico Pè1  Mario Augusto Pagnotta2  Bizuayehu Tesfaye4  Temesgen Magule Olango4 
[1]Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
[2]Department of Science and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE), Università degli Studi della Tuscia, Via San Camillo de Lellis, Viterbo, 01100, Italy
[3]ENEA, UT BIORAD, Laboratory of Biotechnology, Research Center Casaccia, Via Anguillarese 301, Rome, 00123, Italy
[4]Hawassa University, School of Plant and Horticulture Science, Awassa, Ethiopia
关键词: Cross-genera transferability;    Musa;    Genetic diversity;    SSR markers;    DNA pyrosequencing;    Ensete ventricosum;   
Others  :  1223577
DOI  :  10.1186/s12863-015-0250-8
 received in 2015-02-27, accepted in 2015-07-09,  发布年份 2015
PDF
【 摘 要 】

Background

Enset (Ensete ventricosum (Welw.) Cheesman; Musaceae) is a multipurpose drought-tolerant food security crop with high conservation and improvement concern in Ethiopia, where it supplements the human calorie requirements of around 20 million people. The crop also has an enormous potential in other regions of Sub-Saharan Africa, where it is known only as a wild plant. Despite its potential, genetic and genomic studies supporting breeding programs and conservation efforts are very limited. Molecular methods would substantially improve current conventional approaches. Here we report the development of the first set of SSR markers from enset, their cross-transferability to Musa spp., and their application in genetic diversity, relationship and structure assessments in wild and cultivated enset germplasm.

Results

SSR markers specific to E. ventricosum were developed through pyrosequencing of an enriched genomic library. Primer pairs were designed for 217 microsatellites with a repeat size > 20 bp from 900 candidates. Primers were validated in parallel by in silico and in vitro PCR approaches. A total of 67 primer pairs successfully amplified specific loci and 59 showed polymorphism. A subset of 34 polymorphic SSR markers were used to study 70 both wild and cultivated enset accessions. A large number of alleles were detected along with a moderate to high level of genetic diversity. AMOVA revealed that intra-population allelic variations contributed more to genetic diversity than inter-population variations. UPGMA based phylogenetic analysis and Discriminant Analysis of Principal Components show that wild enset is clearly separated from cultivated enset and is more closely related to the out-group Musa spp. No cluster pattern associated with the geographical regions, where this crop is grown, was observed for enset landraces. Our results reaffirm the long tradition of extensive seed-sucker exchange between enset cultivating communities in Southern Ethiopia.

Conclusion

The first set of genomic SSR markers were developed in enset. A large proportion of these markers were polymorphic and some were also transferable to related species of the genus Musa. This study demonstrated the usefulness of the markers in assessing genetic diversity and structure in enset germplasm, and provides potentially useful information for developing conservation and breeding strategies in enset.

【 授权许可】

   
2015 Olango et al.

【 预 览 】
附件列表
Files Size Format View
20150903013847544.pdf 2697KB PDF download
Fig 4. 192KB Image download
Fig 3. 55KB Image download
Fig 2. 52KB Image download
Fig. 1. 83KB Image download
【 图 表 】

Fig. 1.

Fig 2.

Fig 3.

Fig 4.

【 参考文献 】
  • [1]Cheesman EE. Classification of the Bananas. I. The genus Ensete Horan. Kew Bull. 1947; 2:97-106.
  • [2]Baker RED, Simmonds NW. The genus Ensete in Africa. Kew Bull. 1953; 3:05-416.
  • [3]Simmonds NW. The evolution of the bananas. Longman, London; 1962.
  • [4]Westphal E. Agricultural systems in Ethiopia. Centre for Agricultural Publishing and Documentation, Wageningen; 1975.
  • [5]Brandt SA, Spring A, Hiebisch C, McCabe JT, Tabogie E, Diro M et al.. The “Tree Against Hunger” Enset based agricultural systems in Ethiopia. American Association for the Advancement of Science, Washington DC; 1997.
  • [6]Nurfeta A, Tolera A, Eik LO, Sundstøl F. Yield and mineral content of ten enset (Ensete ventricosum) varieties. Trop AnimHealth Prod. 2008; 40:299-309.
  • [7]Tsegaye A, Struik PC. Analysis of enset (Ensete ventricosum) indigenous production methods and farm-based biodiversity in major enset growing regions of Southern Ethiopia. Exp Agric. 2002; 38:292-315.
  • [8]Bizuayehu T. The enset (Ensete ventricosum) gardens of Sidama: composition, structure and dynamics of a traditional poly-variety system. Gen Resour Crop Evol. 2008; 55:1347-1358.
  • [9]Olango TM, Tesfaye B, Catellani M, Pè ME. Indigenous knowledge, use and on-farm management of enset (Ensete ventricosum (Welw.) Cheesman) diversity in Wolaita, Southern Ethiopia. J Ethnobiol Ethnomed. 2014; 10:1-18. BioMed Central Full Text
  • [10]Vavilov NI. The origin, variation, immunity, and breeding of cultivated plants. Chron Bot. 1951; 13:1-366.
  • [11]Haile MY. Cluster analysis for evaluation of genetic diversity in Enset (Enset ventricosum (Welw.) Cheesman) clones at Areka Condition. J Plant Sci. 2014; 2(1):55-69.
  • [12]Bezuneh T. Technological challenges of sustainable enset farming system: enhancing production of food/fiber and industrial outputs. In: Enset Research and Development Experiences in Ethiopia 2010. Ethiopian Institute of Agricultural Research (EIAR), Wolkite; 2010: p.1-20.
  • [13]Tobiaw DC, Bekele E. Analysis of genetic diversity among cultivated enset (Ensete ventricosum) populations from Essera and Kefficho, southwestern part of Ethiopia using inter simple sequence repeats (ISSRs) marker. Afr J Biotechnol. 2011; 70:15697-15709.
  • [14]Birmeta G, Nybom H, Bekele E. RAPD analysis of genetic diversity among clones of the Ethiopian crop plant Ensete ventricosum. Euphytica. 2002; 124(3):315-325.
  • [15]Negash A, Tsegaye A, van Treuren R, Visser B. AFLP Analysis of Enset Clonal Diversity in South and Southwestern Ethiopia for conservation. Crop Sci. 2002; 42:1105-1111.
  • [16]Morgante M, Olivieri AM. PCR-amplified microsatellites as markers in plant genetics. Plant J. 1993; 3(1):175-182.
  • [17]Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S et al.. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed. 1996; 2:225-238.
  • [18]Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: a review. Mol Ecol. 2002; 11:1-16.
  • [19]Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E et al.. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant science. Am J Bot. 2012; 99:193-208.
  • [20]Getachew S, Mekbib F, Admassu B, Kelemu S, Kidane S, Negisho K et al.. A Look into Genetic Diversity of Enset (Ensete ventricosum (Welw.) Cheesman) Using Transferable Microsatellite Sequences of Banana in Ethiopia. J Crop Improv. 2014; 28(2):59-183.
  • [21]Bekele E, Shigeta M. Phylogenetic relationships between Ensete and Musa species as revealed by the trnT trnF region of cpDNA. Gen Resour Crop Evol. 2011; 58:259-269.
  • [22]Birmeta G, Nybom H, Bekele E. Distinction between wild and cultivated enset (Ensete ventricosum) gene pools in Ethiopia using RAPD markers. Hereditas. 2004; 140:139-148.
  • [23]Häkkinen M. Reappraisal of sectional taxonomy in Musa (Musaceae). Taxon. 2013; 68:809-813.
  • [24]Malausa T, Gilles A, Meglécz E, Blanquart H, Duthoy S, Costedoat C et al.. High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour. 2011; 11:638-644.
  • [25]Temnykh S, Declerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 2001; 11(8):1441-1452.
  • [26]Charif D, Lobry JR. SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Structural approaches to sequence evolution: Molecules, networks, populations. Bastolla U, Porto M, Roman HE, Vendruscolo M, editors. Springer Verlag, New York; 2007: p.207-232.
  • [27]Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist. Methods Mol Biol. 2000; 132:365-386.
  • [28]Qu W, Zhou Y, Zhang Y, Lu Y, Wang X, Zhao D et al.. MFEprimer-2.0: a fast thermodynamics-based program for checking PCR primer specificity. Nucleic Acids Res. 2012; 40:W205-W208.
  • [29]Harrison J, Moore KA, Paszkiewicz K, Jones T, Grant MR, Ambacheew D et al.. A draft genome sequence for ensete ventricosum, the drought-tolerant “tree against hunger”. Agronomy. 2014; 4:13-33.
  • [30]D’Hont A, Denoeud F, Aury J, Baurens FC, Carreel F, Garsmeur O et al.. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012; 488:213-217.
  • [31]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28:2731-2739.
  • [32]Nei M, Takezaki N. Estimation of genetic distances and phylogenetic trees from DNA analysis. In: 5th World Congress on Genetics Applied to Livestock Production: 1983; Guelph. University of Guelph, Ontario; 1983: p.405-412.
  • [33]Liu K, Muse S. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005; 21:2128-2129.
  • [34]Peakall R, Smouse P. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012; 28:2537-2539.
  • [35]Kalinowski ST. Hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes. 2005; 5(1):187-189.
  • [36]Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010; 11:94. BioMed Central Full Text
  • [37]Jombart T. Adegenet: R package for the multivariate analysis of geneticmarkers. Bioinformatics. 2008; 24:1403-1405.
  • [38]Lepais O, Bacles CFE. Comparison of random and SSR-enriched shotgun pyrosequencing for microsatellite discovery and single multiplex PCR optimization in Acacia harpophylla F. Muell. Ex Benth. Mol Ecol Resourc. 2011; 11(4):711-724.
  • [39]Wang JY, Zheng LS, Huang BZ, Liu WL, Wu YT. Development, characterization, and variability analysis of microsatellites from a commercial cultivar of Musa acuminata. Gen Resour Crop Evol. 2010; 57:553-563.
  • [40]Kale SM, Pardeshi VC, Kadoo NY, Ghorpade PB, Jana MM, Gupta VS. Development of genomic simple sequence repeat markers for linseed using next-generation sequencing technology. Mol Breed. 2012; 30:597-606.
  • [41]Yang T, Jiang J, Burlyaeva M, Hu J, Coyne CJ, Kumar S et al.. Large-scale microsatellite development in grasspea (Lathyrus sativus L.), an orphan legume of the arid areas. BMC Plant Biol. 2014; 14(65):1-12.
  • [42]Delêtre M, Soengas B, Utge J, Lambourdière J, Sørensen M. Microsatellite Markers for the Yam Bean Pachyrhizus (Fabaceae) open access. Appl Plant Sci. 2013; 1(7):1-5.
  • [43]Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 2005; 23:48-55.
  • [44]Joseph IH, Hazel JN. A novel approach for mining polymorphic microsatellite markers in silico. PLoS One. 2011; 6(8):1-9.
  • [45]Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD et al.. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics. 2010; 11:569. BioMed Central Full Text
  • [46]Victoria FC, Maia LC, Oliveira AC. In silico comparative analysis of SSR markers in plants. BMC Plant Biol. 2011; 11:15. BioMed Central Full Text
  • [47]Getachewa S, Mekbiba F, Admassub B, Kelemuc S, Kidaneb S, Negishob K et al.. A look into genetic diversity of enset (Ensete ventricosum (Welw.) cheesman) using transferable microsatellite sequences of banana in Ethiopia. J Crop Improv. 2014; 28(2):159-183.
  • [48]Aradhya MK, Dangl GS, Prins BH, Boursiquot J-M, Walker MA, Meredith CP et al.. Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res. 2003; 81(3):179-182.
  • [49]Koehmstedt AM, Aradhya MK, Soleri D, Smith JL, Polito VS. Molecular characterization of genetic diversity, structure, and differentiation in the olive (Olea europaea L.) germplasm collection of the United States Department of Agriculture. Gen Resour Crop Evol. 2011; 58(4):519-531.
  • [50]Wang JY, Huang BZ, Chen YY, Feng SP, Wu YT. Identification and characterization of microsatellite markers from Musa balbisiana. Plant Breed. 2011; 130:584-590.
  • [51]Shigeta M. Creating landrace diversity: the case of the Ari people and Ensete (Ensete ventricosum) in Ethiopia. In: Redefining nature. Ellen RKF, editor. Berg: Berg, Oxford; 1996: p.233-268.
  • [52]Bizuayehu T, Ludders P. Diversity and distribution patterns of enset landraces in Sidama, Southern Ethiopia. Gen Resour Crop Evol. 2003; 50:359-371.
  • [53]Duputié A, David P, Debain C, McKey D. Natural hybridization between a clonally propagated crop, cassava (Manihot esculenta Crantz) and a wild relative in French Guiana. Mol Ecol. 2007; 16:3025-3038.
  • [54]Perrier X, Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F et al.. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc Natl Acad Sci U S A. 2011; 108(8):11311-11318.
  • [55]Irish B, Cuevas E, Simpson A, Scheffler E, Sardos J, Ploetz R et al.. Musa spp. Germplasm management: microsatellite fingerprinting of USDA–ARS National Plant Germplasm System Collection. Crop Sci. 2014; 54:2140-2151.
  文献评价指标  
  下载次数:25次 浏览次数:25次