期刊论文详细信息
BMC Cancer
The role of CXC-chemokine receptor CXCR2 and suppressor of cytokine signaling-3 (SOCS-3) in renal cell carcinoma
Anastasios Stofas3  Georgia Levidou3  Christina Piperi4  Christos Adamopoulos4  Georgia Dalagiorgou4  Aristotelis Bamias2  Alexandra Karadimou2  George A Lainakis2  Stefanos Papadoukakis1  Konstantinos Stravodimos1  Meletios-Athanasios Dimopoulos2  Efstratios Patsouris3  Hariklia Gakiopoulou3  Penelope Korkolopoulou3 
[1] Department of Urology, Laiko Hospital, University of Athens, Medical School, 11517 Athens, Greece
[2] Department of Clinical Therapeutics, Alexandra General Hospital, University of Athens, Medical School, 11528 Athens, Greece
[3] First Department of Pathology, Laiko Hospital, University of Athens, Medical School, 75 Mikras Asias street, 11527 Athens, Greece
[4] Department of Biological Chemistry, University of Athens, Medical School, 11527 Athens, Greece
关键词: Renal cell carcinoma;    Angiogenesis;    Microvessels;    IL-8;    IL-6;    SOCS-3;    CXCR2;   
Others  :  859007
DOI  :  10.1186/1471-2407-14-149
 received in 2013-07-11, accepted in 2014-02-03,  发布年份 2014
PDF
【 摘 要 】

Background

Chemokine receptor signaling pathways are implicated in the pathobiology of renal cell carcinoma (RCC). However, the clinical relevance of CXCR2 receptor, mediating the effects of all angiogenic chemokines, remains unclear. SOCS (suppressor of cytokine signaling)-3 is a negative regulator of cytokine-driven responses, contributing to interferon-α resistance commonly used to treat advanced RCC with limited information regarding its expression in RCC.

Methods

In this study, CXCR2 and SOCS-3 were immunohistochemically investigated in 118 RCC cases in relation to interleukin (IL)-6 and (IL)-8, their downstream transducer phosphorylated (p-)STAT-3, and VEGF expression, being further correlated with microvascular characteristics, clinicopathological features and survival. In 30 cases relationships with hypoxia-inducible factors, i.e. HIF-1a, p53 and NF-κΒ (p65/RelA) were also examined. Validation of immunohistochemistry and further investigation of downstream transducers, p-JAK2 and p-c-Jun were evaluated by Western immunoblotting in 5 cases.

Results

Both CXCR2 and IL-8 were expressed by the neoplastic cells their levels being interrelated. CXCR2 strongly correlated with the levels of HIF-1a, p53 and p65/RelA in the neoplastic cells. Although SOCS-3 was simultaneously expressed with p-STAT-3, its levels tended to show an inverse relationship with p-JAK-2 and p-c-Jun in Western blots and were positively correlated with HIF-1a, p53 and p65/p65/RelA expression. Neither CXCR2 nor SOCS-3 correlated with the extent of microvascular network. IL-8 and CXCR2 expression was associated with high grade, advanced stage and the presence/number of metastases but only CXCR2 adversely affected survival in univariate analysis. Elevated SOCS-3 expression was associated with progression, the presence/number of metastasis and shortened survival in both univariate and multivariate analysis.

Conclusions

Our findings implicate SOCS-3 overexpression in RCC metastasis and biologic aggressiveness advocating its therapeutic targeting. IL-8/CXCR2 signaling also contributes to the metastatic phenotype of RCC cells but appears of lesser prognostic utility. Both CXCR2 and SOCS-3 appear to be related to transcription factors induced under hypoxia.

【 授权许可】

   
2014 Stofas et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724063359133.pdf 2752KB PDF download
64KB Image download
51KB Image download
82KB Image download
214KB Image download
79KB Image download
62KB Image download
45KB Image download
75KB Image download
450KB Image download
【 图 表 】

【 参考文献 】
  • [1]Fukata S, Inoue K, Kamada M, Kawada C, Furihata M, Ohtsuki Y, Shuin T: Levels of angiogenesis and expression of angiogenesis-related genes are prognostic for organ-specific metastasis of renal cell carcinoma. Cancer 2005, 103:931-942.
  • [2]Slaton JW, Inoue K, Perrotte P, El-Naggar AK, Swanson DA, Fidler IJ, Dinney CP: Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 2001, 158:735-743.
  • [3]Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E: Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998, 394(998):485-490.
  • [4]Hao C, Parney IF, Roa WH, Turner J, Petruk KC, Ramsay DA: Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 2002, 103:171-178.
  • [5]Rolhion C, Penault-Llorca F, Kémény JL, Lemaire JJ, Jullien C, Labit-Bouvier C, Finat-Duclos F, Verrelle P: Interleukin-6 overexpression as a marker of malignancy in human gliomas. J Neurosurg 2001, 94:97-101.
  • [6]Guo Y, Xu F, Lu T, Duan Z, Zhang Z: Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 2012, 38:904-910.
  • [7]Imada K, Leonard WJ: The Jak-STAT pathway. Mol Immunol 2000, 37:1-11.
  • [8]Brantley EC, Nabors LB, Gillespie GY, Choi YH, Palmer CA, Harrison K, Roarty K, Benveniste EN: Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin Cancer Res 2008, 14:4694-4704.
  • [9]Shuai K, Liu B: Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003, 3:900-911.
  • [10]Yu H, Jove R: The STATs of cancer–new molecular targets come of age. Nat Rev Cancer 2004, 4:97-105.
  • [11]Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007, 21:2683-2710.
  • [12]Murphy PM, Tiffany HL: Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 1991, 253:1280-1283.
  • [13]Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM: The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR + CXC chemokine-induced angiogenic activity. J Immunol 2000, 165:5269-5277.
  • [14]Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN, Kahnoski R, Futreal PA, Furge KA, Teh BT: Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res 2010, 70:1063-1071.
  • [15]Wormald S, Hilton DJ: Inhibitors of cytokine signal transduction. J Biol Chem 2004, 279:821-824.
  • [16]Rakesh K, Agrawal DK: Controlling cytokine signalling by constitutive inhibitors. Biochem Pharmacol 2005, 70:649-657.
  • [17]Baker BJ, Akhtar LN, Benveniste EN: SOCS1 and SOCS3 in the control of CNS immunity. Trends Immunol 2009, 30:392-400.
  • [18]Yoshimura A, Naka T, Kubo M: SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 2007, 7:454-465.
  • [19]Zhou H, Miki R, Eeva M, Fike FM, Seligson D, Yang L, Yoshimura A, Teitell MA, Jamieson CA, Cacalano NA: Reciprocal regulation of SOCS 1 and SOCS3 enhances resistance to ionizing radiation in glioblastoma multiforme. Clin Cancer Res 2007, 13:2344-2353.
  • [20]Mestas J, Burdick MD, Reckamp K, Pantuck A, Figlin RA, Strieter RM: The Role of CXCR2/CXCR2 ligand biological axis in Renal cell carcinoma. J Immunol 2005, 175:5351-5357.
  • [21]Eble J, Sauter G, Epstein J, et al.: Pathology and genetics of tumours of the urinary system and male genital organs. Lyon: World Health Organization; 2004:9-43. IARC Press
  • [22]Sobin LH, Gospodariwicz M, Wittekind C: TNM classification of malignant tumors. UICC. International Union Against Cancer. 7th edition. Wiley-Blackwell; 2009:255-257.
  • [23]Piperi C, Samaras V, Levidou G, Kavantzas N, Boviatsis E, Petraki K, Grivas A, Barbatis C, Varsos V, Patsouris E, Korkolopoulou P: Prognostic significance of IL-8-STAT-3 pathway in astrocytomas: correlation with IL-6, VEGF and microvessel morphometry. Cytokine 2011, 55:387-395.
  • [24]Ebnet K, Vestweber D: Molecular mechanisms that control leukocyte estravasation: the selectins and the chemokines. Histochem Cell Biol 1999, 112:1-23.
  • [25]Jöhrer K, Zelle-Rieser C, Perathoner A, Moser P, Hager M, Ramoner R, Gander H, Höltl L, Bartsch G, Greil R, Thurnher M: Up-regulation of functional chemokine receptor CCR3 in human renal cell carcinoma. Clin Cancer Res 2005, 11:2459-2465.
  • [26]Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003, 3:721-732.
  • [27]Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruïne AP: VHL and HIF signalling in renal cell carcinogenesis. J Pathol 2010, 201:125-138.
  • [28]Waugh DJ, Johnston PG, Williams KJ, StratfordI J, Pettigrew J, Scullin P, Maxwell PJ, Gallagher R, Seaton A, Wilson C: HIF-1 and NF-kappaB-mediated upregulationof CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene 2007, 26(52):7333-7345.
  • [29]Guo H, Liu Z, Xu B, Hu H, Wei Z, Liu Q, Zhang X, Ding X, Wang Y, Zhao M, Gong Y, Shao C: Chemokine receptor CXCR2 is transactivated by p53 and induces p38-mediated cellular senescence in response to DNA damage. Aging Cell 2013, 12(6):1110-1121.
  • [30]Hu B, Colletti LM: CXC receptor-2 knockout genotype increases X-linked inhibitor of apoptosis protein and protects mice from acetaminophen hepatotoxicity. Hepatology 2010, 52(2):691-702.
  • [31]Pirie-Shepherd S: Biomarkers of angiogenesis and their role in patient for angiogenic therapy. Curr Angiogenes 2012, 1:115-124.
  • [32]Oladipo O, Conlon S, O'Grady A, Purcell C, Wilson C, Maxwell PJ, Johnston PG, Stevenson M, Kay EW, Wilson RH, Waugh DJ: The expression and prognostic impact of CXC-chemokines in stage II and III colorectal cancer epithelial and stromal tissue. Br J Cancer 2011, 104:480-487.
  • [33]Korkolopoulou P, Patsouris E, Konstantinidou AE, Pavlopoulos PM, Kavantzas N, Boviatsis E, Thymara I, Perdiki M, Thomas-Tsagli E, Angelidakis D, Rologis D, Sakkas D: Hypoxia-inducible factor 1alpha/vascular endothelial growth factor axis in astrocytomas. Associations with microvessel morphometry, proliferation and prognosis. Neuropathol Appl Neurobiol 2004, 30:267-278.
  • [34]Matsuo Y, Raimondo M, Woodward TA, Wallace MB, Gill KR, Tong Z, Burdick MD, Yang Z, Strieter RM, Hoffman RM, Guha S: CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer. Int J Cancer 2009, 125:1027-1037.
  • [35]Singh S, Varney M, Singh RK: Host CXCR2-dependent regulation of melanoma growth, angiogenesis, and experimental lung metastasis. Cancer Res 2009, 69:411-415.
  • [36]Yang G, Rosen DG, Liu G, Yang F, Guo X, Xiao X, Xue F, Mercado-Uribe I, Huang J, Lin SH, Mills GB, Liu J: CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis. Clin Cancer Res 2010, 16:3875-3886.
  • [37]Leu CM, Wong FH, Chang C, Huang SF, Hu CP: Interleukin-6 acts as an antiapoptotic factor in human esophageal carcinoma cells through the activation of both STAT3 and mitogen-activated protein kinase pathways. Oncogene 2003, 22:7809-7818.
  • [38]Horiguchi A, Oya M, Shimada T, Uchida A, Marumo K, Murai M: Activation of signal transducer and activator of transcription 3 in renal cell carcinoma: a study of incidence and its association with pathological features and clinical outcome. J Urol 2002, 168:762-765.
  • [39]Dolled-Filhart M, Camp RL, Kowalski DP, Smith BL, Rimm DL: Tissue microarray analysis of signal transducers and activators of transcription 3 (Stat3) and phospho-Stat3 (Tyr705) in node-negative breast cancer shows nuclear localization is associated with a better prognosis. Clin Cancer Res 2003, 9:594-600.
  • [40]Huang W, Yang S, Wu C, Chen W, Huang Y, Su Y, Chai C: Expression of signal transducer and activator of transcription 3 and suppressor of cytokine signaling 3 in urothelial carcinoma. Kaohsiung J Med Sci 2009, 25:640-645.
  • [41]Korkolopoulou P, Levidou G, El-Habr EA, Adamopoulos C, Samaras V, Zisakis A, Kavantzas N, Boviatsis E, Fragkou P, Papavassiliou AG, Patsouris E, Piperi C: Expression of Interleukin-8 receptor CXCR2 and Supressor of Cytokine Signaling-3 in Astrocytic tumors. Mol Med 2012, 18:379-388.
  • [42]Miao T, Wu D, Zhang Y, Bo X, Xiao F, Zhang X, Magoulas C, Subang MC, Wang P, Richardson PM: SOCS3 suppresses AP-1 transcriptional activity in neuroblastoma cells through inhibition of c-Jun N-terminal kinase. Mol Cell Neurosci 2008, 37(2):367-375.
  • [43]Sinha S, Koul N, Dixit D, Sharma V, Sen E: IGF-1 induced HIF-1α-TLR9 crosstalk regulates inflammatory responses in glioma. Cell Signal 2011, 23(11):1869-1875.
  • [44]Iwahori K, Serada S, Fujimoto M, Ripley B, Nomura S, Mizuguchi H, Shimada K, Takahashi T, Kawase I, Kishimoto T, Naka T: SOCS-1 gene delivery cooperates with cisplatin plus pemetrexed to exhibit preclinical antitumor activity againstmalignant pleural mesothelioma. Int J Cancer 2013, 132(2):459-471.
  • [45]Puhr M, Santer FR, Neuwirt H, Susani M, Nemeth JA, Hobisch A, Kenner L, Culig Z: Down-regulation of Suppressor of Cytokine Signaling-3 causes prostate cancer cell death through activation of the extrinsic and intrinsic apoptosis pathways. Cancer Res 2009, 69:7375-7384.
  • [46]Lu Y, Fukuyama S, Yoshida R, Kobayashi T, Saeki K, Shiraishi H, Yoshimura A, Takaesu G: Loss of SOCS3 gene expression converts STAT3 function from anti-apoptotic to pro-apoptotic. J Biol Chem 2006, 281:36683-36690.
  • [47]Tomita S, Ishibashi K, Hashimoto K, Sugino T, Yanagida T, Kushida N, Shshido K, Aikawa K, Sato Y, Suzutani T, Yamaguchi O: Suppression of SOCS3 increases susceptibility of renal cell carcinoma to interferon-α. Cancer Sci 2011, 102:57-63.
  • [48]Oguro T, Ishibashi K, Sugino T, Hashimoto K, Tomita S, Takahashi N, Yanagida T, Haga N, Aikawa K, Suzutani T, Yamaguchi O, Kojima Y: Humanised antihuman IL-6R antibody with interferon inhibits renal cell carcinoma cell growth in vitro and in vivo through suppressed SOCS3 expression. Eur J Cancer 2013, 49:1715-1724.
  文献评价指标  
  下载次数:47次 浏览次数:11次