期刊论文详细信息
BMC Medical Genetics
Genes involved in muscle contractility and nutrient signaling pathways within celiac disease risk loci show differential mRNA expression
Åsa Torinsson Naluai1  Daniel Agardh6  Staffan Nilsson4  Henrik Arnell5  Lars Browaldh3  Audur H. Gudjonsdottir2  Caroline Montén6 
[1] Department of Medical & Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg, Sweden;Department of Pediatrics, Queen Silvia Children’s Hospital, Sahlgrenska Academy, Gothenburg, Sweden;Department of Clinical Science & Education, Karolinska Institute Södersjukhuset, Stockholm, Sweden;Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden;Department of Pediatric Gastroenterology, Hepatology & Nutrition, Karolinska University Hospital, Stockholm, Sweden;Diabetes & Celiac Disease Unit, Department of Clinical Sciences, Lund University, Jan Waldenströms gata 35, CRC, 91:10, Malmö, 202 05, Sweden
关键词: Single nucleotide polymorphisms;    Peripheral blood;    Small intestinal mucosa;    Gene expression;    Celiac Disease;   
Others  :  1220336
DOI  :  10.1186/s12881-015-0190-1
 received in 2014-10-20, accepted in 2015-06-16,  发布年份 2015
PDF
【 摘 要 】

Background

Risk gene variants for celiac disease, identified in genome-wide linkage and association studies, might influence molecular pathways important for disease development. The aim was to examine expression levels of potential risk genes close to these variants in the small intestine and peripheral blood and also to test if the non-coding variants affect nearby gene expression levels in children with celiac disease.

Methods

Intestinal biopsy and peripheral blood RNA was isolated from 167 children with celiac disease, 61 with potential celiac disease and 174 disease controls. Transcript levels for 88 target genes, selected from celiac disease risk loci, were analyzed in biopsies of a smaller sample subset by qPCR. Differentially expressed genes (3 from the pilot and 8 previously identified) were further validated in the larger sample collection (n = 402) of both tissues and correlated to nearby celiac disease risk variants.

Results

All genes were significantly down- or up-regulated in the intestinal mucosa of celiac disease children, NTS being most down-regulated (Fold change 3.6, p < 0.001). In contrast, PPP1R12B isoform C was up-regulated in the celiac disease mucosa (Fold change 1.9, p < 0.001). Allele specific expression of GLS (rs6741418, p = 0.009), INSR (rs7254060, p = 0.003) and NCALD (rs652008, p = 0.005) was also detected in the biopsies. Two genes (APPL2 and NCALD) were differentially expressed in peripheral blood but no allele specific expression was observed in this tissue.

Conclusion

The differential expression of NTS and PPP1R12B indicate a potential role for smooth muscle contractility and cell proliferation in celiac disease, whereas other genes like GLS, NCALD and INSR suggests involvement of nutrient signaling and energy homeostasis in celiac disease pathogenesis. A disturbance in any of these pathways might contribute to development of childhood celiac disease.

【 授权许可】

   
2015 Montén et al.

【 预 览 】
附件列表
Files Size Format View
20150722023844182.pdf 778KB PDF download
Fig. 2. 25KB Image download
Fig. 1. 38KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Sollid LM. Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol. 2002; 2(9):647-655.
  • [2]Gujral N, Freeman HJ, Thomson AB. Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol WJG. 2012; 18(42):6036-6059.
  • [3]Greco L, Romino R, Coto I, Di Cosmo N, Percopo S, Maglio M, Paparo F, Gasperi V, Limongelli MG, Cotichini R et al.. The first large population based twin study of coeliac disease. Gut. 2002; 50(5):624-628.
  • [4]van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, Inouye M, Wapenaar MC, Barnardo MC, Bethel G, Holmes GK et al.. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet. 2007; 39(7):827-829.
  • [5]Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, Zhernakova A, Heap GA, Adany R, Aromaa A et al.. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010; 42(4):295-302.
  • [6]Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A, Bakker SF, Bardella MT, Bhaw-Rosun L, Castillejo G et al.. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet. 2011; 43(12):1193-1201.
  • [7]Ostensson M, Monten C, Bacelis J, Gudjonsdottir AH, Adamovic S, Ek J, Ascher H, Pollak E, Arnell H, Browaldh L et al.. A possible mechanism behind autoimmune disorders discovered by genome-wide linkage and association analysis in celiac disease. PLoS One. 2013; 8(8): Article ID e70174
  • [8]Kjelleras J, Vaziri-Sani F, Agardh D. Improved efficacy by using the pTnT-rhtTG plasmid for the detection of celiac disease specific tissue transglutaminase autoantibodies in radioligand binding assays. Scand J Clin Lab Invest. 2011; 71(8):701-704.
  • [9]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001; 25(4):402-408.
  • [10]Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979; 6(2):65-70.
  • [11]Diosdado B. A microarray screen for novel candidate genes in coeliac disease pathogenesis. Gut. 2004; 53(7):944-951.
  • [12]Bracken S, Byrne G, Kelly J, Jackson J, Feighery C. Altered gene expression in highly purified enterocytes from patients with active coeliac disease. BMC Genomics. 2008; 9:377. BioMed Central Full Text
  • [13]Zhao D, Pothoulakis C. Effects of NT on gastrointestinal motility and secretion, and role in intestinal inflammation. Peptides. 2006; 27(10):2434-2444.
  • [14]Devader C, Beraud-Dufour S, Coppola T, Mazella J. The anti-apoptotic role of neurotensin. Cells. 2013; 2(1):124-135.
  • [15]Brun P, Mastrotto C, Beggiao E, Stefani A, Barzon L, Sturniolo GC, Palu G, Castagliuolo I. Neuropeptide neurotensin stimulates intestinal wound healing following chronic intestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2005; 288(4):G621-G629.
  • [16]Moss SF, Attia L, Scholes JV, Walters JR, Holt PR. Increased small intestinal apoptosis in coeliac disease. Gut. 1996; 39(6):811-817.
  • [17]Ito M, Nakano T, Erdodi F, Hartshorne DJ. Myosin phosphatase: Structure, regulation and function. Mol Cell Biochem. 2004; 259(1–2):197-209.
  • [18]Fujioka M, Takahashi N, Odai H, Araki S, Ichikawa K, Feng JH, Nakamura M, Kaibuchi K, Hartshorne DJ, Nakano T et al.. A new isoform of human myosin phosphatase targeting/regulatory subunit (MYPT2): cDNA cloning, tissue expression, and chromosomal mapping. Genomics. 1998; 49(1):59-68.
  • [19]Bannert N, Vollhardt K, Asomuddinov B, Haag M, Konig H, Norley S, Kurth R. PDZ Domain-mediated interaction of interleukin-16 precursor proteins with myosin phosphatase targeting subunits. J Biol Chem. 2003; 278(43):42190-42199.
  • [20]Skundric DS, Cai J, Cruikshank WW, Gveric D. Production of IL-16 correlates with CD4+ Th1 inflammation and phosphorylation of axonal cytoskeleton in multiple sclerosis lesions. J Neuroinflammation. 2006; 3:13. BioMed Central Full Text
  • [21]Kumar V, Wijmenga C, Withoff S. From genome-wide association studies to disease mechanisms: celiac disease as a model for autoimmune diseases. Semin Immunopathol. 2012; 34(4):567-580.
  • [22]Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S et al.. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012; 22(9):1790-1797.
  • [23]Zhao L, Huang Y, Tian C, Taylor L, Curthoys N, Wang Y, Vernon H, Zheng J. Interferon-alpha regulates glutaminase 1 promoter through STAT1 phosphorylation: relevance to HIV-1 associated neurocognitive disorders. PLoS One. 2012; 7(3): Article ID e32995
  • [24]Gelfand MD, Spiro HM, Herskovic T. Small intestine glutaminase deficiency in celiac disease. Am J Dig Dis. 1968; 13(7):638-642.
  • [25]Trynka G, Zhernakova A, Romanos J, Franke L, Hunt KA, Turner G, Bruinenberg M, Heap GA, Platteel M, Ryan AW et al.. Coeliac disease-associated risk variants in TNFAIP3 and REL implicate altered NF-kappaB signalling. Gut. 2009; 58(8):1078-1083.
  • [26]Plaza-Izurieta L, Castellanos-Rubio A, Irastorza I, Fernandez-Jimenez N, Gutierrez G, Cegec, Bilbao JR. Revisiting genome wide association studies (GWAS) in coeliac disease: replication study in Spanish population and expression analysis of candidate genes. J Med Genet. 2011; 48(7):493-496.
  • [27]Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW, Fairfax BP, Schramm K, Powell JE et al.. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013; 45(10):1238-U1195.
  • [28]Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R, Maouche S, Germain M, Lackner K, Rossmann H et al.. Genetics and beyond–the transcriptome of human monocytes and disease susceptibility. PLoS One. 2010; 5(5): Article ID e10693
  • [29]Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R, Dermitzakis ET. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature. 2010; 464(7289):773-U151.
  • [30]Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, Stephens M, Pritchard JK. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet. 2008; 4(10): Article ID e1000214
  • [31]Kathiresan S, Manning AK, Demissie S, D’Agostino RB, Surti A, Guiducci C, Gianniny L, Burtt NP, Melander O, Orho-Melander M et al.. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med Gen. 2007; 8 Suppl 1:S17. BioMed Central Full Text
  • [32]Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, Jones CG, Zaitlen NA, Varilo T, Kaakinen M et al.. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Gen. 2009; 41(1):35-46.
  • [33]Grassi MA, Tikhomirov A, Ramalingam S, Below JE, Cox NJ, Nicolae DL. Genome-wide meta-analysis for severe diabetic retinopathy. Hum Mol Genet. 2011; 20(12):2472-2481.
  文献评价指标  
  下载次数:6次 浏览次数:11次