期刊论文详细信息
BMC Cardiovascular Disorders
TSC-22 up-regulates collagen 3a1 gene expression in the rat heart
Jaana Rysä4  Heikki Ruskoaho3  Erja Mustonen2  Elina Koivisto2  Juha Näpänkangas1  Jani Aro2  Annina Kelloniemi2 
[1] Department of Pathology, Institute of Diagnostics, Oulu University Hospital, University of Oulu, Oulu, Finland;Research Unit of Biomedicine (Pharmacology & Toxicology), University of Oulu, Oulu, Finland;Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland;School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
关键词: Myocardial infarction;    Pressure overload;    Heart failure;    Cardiac hypertrophy;   
Others  :  1228279
DOI  :  10.1186/s12872-015-0121-2
 received in 2015-03-02, accepted in 2015-10-01,  发布年份 2015
PDF
【 摘 要 】

Background

The transforming growth factor (TGF)-β is one of the key mediators in cardiac remodelling occurring after myocardial infarction (MI) and in hypertensive heart disease. The TGF-β-stimulated clone 22 (TSC-22) is a leucine zipper protein expressed in many tissues and possessing various transcription-modulating activities. However, its function in the heart remains unknown.

Methods

The aim of the present study was to characterize cardiac TSC-22 expression in vivo in cardiac remodelling and in myocytes in vitro. In addition, we used TSC-22 gene transfer in order to examine the effects of TSC-22 on cardiac gene expression and function.

Results

We found that TSC-22 is rapidly up-regulated by multiple hypertrophic stimuli, and in post-MI remodelling both TSC-22 mRNA and protein levels were up-regulated (4.1-fold, P <0.001 and 3.0-fold, P <0.05, respectively) already on day 1. We observed that both losartan and metoprolol treatments reduced left ventricular TSC-22 gene expression. Finally, TSC-22 overexpression by local intramyocardial adenovirus-mediated gene delivery showed that TSC-22 appears to have a role in regulating collagen type IIIα1 gene expression in the heart.

Conclusions

These results demonstrate that TSC-22 expression is induced in response to cardiac overload. Moreover, our data suggests that, by regulating collagen expression in the heart in vivo, TSC-22 could be a potential target for fibrosis-preventing therapies.

【 授权许可】

   
2015 Kelloniemi et al.

【 预 览 】
附件列表
Files Size Format View
20151014011608639.pdf 957KB PDF download
Fig. 6. 77KB Image download
Fig. 5. 32KB Image download
Fig. 4. 66KB Image download
Fig. 3. 32KB Image download
Fig. 2. 46KB Image download
Fig. 1. 40KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Mann DL, Barger PM, Burkhoff D: Myocardial recovery and the failing heart: myth, magic, or molecular target? J Am Coll Cardiol 2012, 60:2465-72.
  • [2]Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al.: Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 2014, 129:e28-292.
  • [3]Oka T, Xu J, Molkentin JD: Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 2007, 18:117-31.
  • [4]Rose BA, Force T, Wang Y: Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010, 90:1507-46.
  • [5]Akazawa H, Komuro I: Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 2003, 92:1079-88.
  • [6]Dobaczewski M, Chen W, Frangogiannis NG: Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 2011, 51:600-6.
  • [7]Bujak M, Frangogiannis NG: The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 2007, 74:184-95.
  • [8]Rosenkranz S: TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 2004, 63:423-32.
  • [9]Liu G, Ding W, Neiman J, Mulder KM: Requirement of Smad3 and CREB-1 in mediating transforming growth factor-beta (TGF beta) induction of TGF beta 3 secretion. J Biol Chem 2006, 281:29479-90.
  • [10]Shibanuma M, Kuroki T, Nose K: Isolation of a gene encoding a putative leucine zipper structure that is induced by transforming growth factor beta 1 and other growth factors. J Biol Chem 1992, 267:10219-24.
  • [11]Kester HA, Blanchetot C, Hertog J, Van der Saag PT, Van der Burg B: Transforming growth factor- beta -stimulated clone-22 is a member of a family of leucine zipper proteins that can homo- and heterodimerize and has transcriptional repressor activity. J Biol Chem 1999, 274:27439-47.
  • [12]Choi SJ, Moon JH, Ahn YW, Ahn JH, Kim DU, Han TH: Tsc-22 enhances TGF-beta signaling by associating with Smad4 and induces erythroid cell differentiation. Mol Cell Biochem 2005, 271:23-8.
  • [13]Yan X: TSC-22 promotes transforming growth factor beta-mediated cardiac myofibroblast differentiation by antagonizing Smad7 activity. Mol Cell Biol 2011, 31:3700-9.
  • [14]Dobens LL, Hsu T, Twombly V, Gelbart WM, Raftery LA, Kafatos FC: The Drosophila bunched gene is a homologue of the growth factor stimulated mammalian TSC-22 sequence and is required during oogenesis. Mech Dev 1997, 65:197-208.
  • [15]Kawamata H, Nakashiro K, Uchida D, Hino S, Omotehara F, Yoshida H, et al.: Induction of TSC-22 by treatment with a new anti-cancer drug, vesnarinone, in a human salivary gland cancer cell. Br J Cancer 1998, 77:71-8.
  • [16]Kawamata H, Fujimori T, Imai Y: TSC-22 (TGF-beta stimulated clone-22): a novel molecular target for differentiation-inducing therapy in salivary gland cancer. Curr Cancer Drug Targets 2004, 4:521-9.
  • [17]Ohta S, Yanagihara K, Nagata K: Mechanism of apoptotic cell death of human gastric carcinoma cells mediated by transforming growth factor beta. Biochem J 1997, 324(Pt 3):777-82.
  • [18]Shostak KO, Dmitrenko VV, Vudmaska MI, Naidenov VG, Beletskii AV, Malisheva TA, et al.: Patterns of expression of TSC-22 protein in astrocytic gliomas. Exp Oncol 2005, 27:314-8.
  • [19]Iida M, Anna CH, Gaskin ND, Walker NJ, Devereux TR: The putative tumor suppressor Tsc-22 is downregulated early in chemically induced hepatocarcinogenesis and may be a suppressor of Gadd45b. Toxicol Sci 2007, 99:43-50.
  • [20]Yu J, Ershler M, Yu L, Wei M, Hackanson B, Yokohama A, et al.: TSC-22 contributes to hematopoietic precursor cell proliferation and repopulation and is epigenetically silenced in large granular lymphocyte leukemia. Blood 2009, 113:5558-67.
  • [21]Yoon CH, Rho SB, Kim ST, Kho S, Park J, Jang IS, et al.: Crucial role of TSC-22 in preventing the proteasomal degradation of p53 in cervical cancer. PLoS One 2012, 7:e42006.
  • [22]Hashiguchi A, Okabayashi K, Asashima M: Role of TSC-22 during early embryogenesis in Xenopus laevis. Dev Growth Differ 2004, 46:535-44.
  • [23]Jager J, Greiner V, Strzoda D, Seibert O, Niopek K, Sijmonsma TP, et al.: Hepatic transforming growth factor-beta 1 stimulated clone-22 D1 controls systemic cholesterol metabolism. Mol Metab 2014, 3:155-66.
  • [24]Dohrmann CE, Noramly S, Raftery LA, Morgan BA: Opposing effects on TSC-22 expression by BMP and receptor tyrosine kinase signals in the developing feather tract. Dev Dyn 2002, 223:85-95.
  • [25]Rysa J, Aro J, Ruskoaho H: Early left ventricular gene expression profile in response to increase in blood pressure. Blood Press 2006, 15:375-83.
  • [26]Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, Kapoun AM, et al.: Altered patterns of gene expression in response to myocardial infarction. Circ Res 2000, 86:939-45.
  • [27]Prussak CE, Almazan MT, Tseng BY: Peptide production from proteins separated by sodium dodecyl-sulfate polyacrylamide gel electrophoresis. Anal Biochem 1989, 178:233-8.
  • [28]Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, et al.: Myocardial infarct size and ventricular function in rats. Circ Res 1979, 44:503-12.
  • [29]Tenhunen O, Soini Y, Ilves M, Rysa J, Tuukkanen J, Serpi R, et al.: p38 Kinase rescues failing myocardium after myocardial infarction: evidence for angiogenic and anti-apoptotic mechanisms. FASEB J 2006, 20:1907-9.
  • [30]Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, et al.: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 1998, 273:2161-8.
  • [31]Niwa H, Yamamura K, Miyazaki J: Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991, 108:193-9.
  • [32]Tenhunen O, Rysa J, Ilves M, Soini Y, Ruskoaho H, Leskinen H: Identification of cell cycle regulatory and inflammatory genes as predominant targets of p38 mitogen-activated protein kinase in the heart. Circ Res 2006, 99:485-93.
  • [33]Rysa J, Leskinen H, Ilves M, Ruskoaho H: Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure. Hypertension 2005, 45:927-33.
  • [34]Ronkainen VP, Ronkainen JJ, Hanninen SL, Leskinen H, Ruas JL, Pereira T, et al.: Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J 2007, 21:1821-30.
  • [35]Aro J, Tokola H, Ronkainen VP, Koivisto E, Tenhunen O, Ilves M, et al.: Regulation of cardiac melusin gene expression by hypertrophic stimuli in the rat. Acta Physiol (Oxf) 2013, 207:470-84.
  • [36]Koivisto E, Karkkola L, Majalahti T, Aro J, Tokola H, Kerkela R, et al.: M-CAT element mediates mechanical stretch-activated transcription of B-type natriuretic peptide via ERK activation. Can J Physiol Pharmacol 2011, 89:539-50.
  • [37]Luosujarvi H, Aro J, Tokola H, Leskinen H, Tenhunen O, Skoumal R, et al.: A novel p38 MAPK target dyxin is rapidly induced by mechanical load in the heart. Blood Press 2010, 19:54-63.
  • [38]Mustonen E, Leskinen H, Aro J, Luodonpää M, Vuolteenaho O, Ruskoaho H, et al.: Metoprolol treatment lowers thrombospondin-4 expression in rats with myocardial infarction and left ventricular hypertrophy. Basic Clin Pharmacol Toxicol 2010, 107:709-17.
  • [39]Hoshijima M, Chien KR: Mixed signals in heart failure: cancer rules. J Clin Invest 2002, 109:849-55.
  • [40]Brand T, Schneider MD: The TGF beta superfamily in myocardium: ligands, receptors, transduction, and function. J Mol Cell Cardiol 1995, 27:5-18.
  • [41]Rosenkranz S, Flesch M, Amann K, Haeuseler C, Kilter H, Seeland U, et al.: Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). Am J Physiol Circ Physiol 2002, 283:H1253-62.
  • [42]Schultz Jel J, Witt SA, Glascock BJ, Nieman ML, Reiser PJ, Nix SL, et al.: TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Invest 2002, 109:787-96.
  • [43]Schluter KD, Frischkopf K, Flesch M, Rosenkranz S, Taimor G, Piper HM: Central role for ornithine decarboxylase in beta-adrenoceptor mediated hypertrophy. Cardiovasc Res 2000, 45:410-7.
  • [44]Schluter KD, Zhou XJ, Piper HM: Induction of hypertrophic responsiveness to isoproterenol by TGF-beta in adult rat cardiomyocytes. Am J Physiol 1995, 269(5 Pt 1):C1311-6.
  • [45]Huntgeburth M, Tiemann K, Shahverdyan R, Schluter KD, Schreckenberg R, Gross ML, et al.: Transforming growth factor beta(1) oppositely regulates the hypertrophic and contractile response to beta-adrenergic stimulation in the heart. PLoS One 2011, 6:e26628.
  • [46]Brouri F, Hanoun N, Mediani O, Saurini F, Hamon M, Vanhoutte PM, et al.: Blockade of β1- and desensitization of β 2-adrenoceptors reduce isoprenaline-induced cardiac fibrosis. Eur J Pharmacol 2004, 485:227-34.
  • [47]De Carvalho FC, Sun Y, Weber KT: Angiotensin II receptor blockade and myocardial fibrosis of the infarcted rat heart. J Lab Clin Med 1997, 129:439-46.
  • [48]Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN, et al.: Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 1994, 89:2273-82.
  • [49]Boluyt MO, Robinson KG, Meredith AL, Sen S, Lakatta EG, Crow MT, et al.: Heart failure after long-term supravalvular aortic constriction in rats. Am J Hypertens 2005, 18(2 Pt 1):202-12.
  • [50]Kuoppala A, Shiota N, Lindstedt KA, Rysä J, Leskinen HK, Luodonpää M, et al.: Expression of bradykinin receptors in the left ventricles of rats with pressure overload hypertrophy and heart failure. J Hypertens 2003, 21:1729-36.
  • [51]Kato M, Wang L, Putta S, Wang M, Yuan H, Sun G, et al.: Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. J Biol Chem 2010, 285:34004-15.
  • [52]Jane-Lise S, Corda S, Chassagne C, Rappaport L: The extracellular matrix and the cytoskeleton in heart hypertrophy and failure. Heart Fail Rev 2000, 5:239-50.
  • [53]Hino S, Kawamata H, Uchida D, Omotehara F, Miwa Y, Begum NM, et al.: Nuclear translocation of TSC-22 (TGF-beta-stimulated clone-22) concomitant with apoptosis: TSC-22 as a putative transcriptional regulator. Biochem Biophys Res Commun 2000, 278:659-64.
  文献评价指标  
  下载次数:46次 浏览次数:21次