BMC Musculoskeletal Disorders | |
Biomechanical comparison of menisci from different species and artificial constructs | |
Thomas Tischer6  Rainer Burgkart5  Stefan Vogt4  Andreas B Imhoff4  Stefan Milz1  Andreas Buettner2  Stefan Doebele3  Eduardo Grande Garcia5  Christopher Adamczyk7  Gunther H Sandmann3  | |
[1] Department of Anatomy, Ludwig- Maximilians- Universitaet Munich, Munich, Germany;Department of Forensic Medicine, University of Rostock, Rostock, Germany;Department of Trauma Surgery, Technische Universitaet, Munich, Germany;Department of Orthopaedic Sport Medicine, Technische Universitaet Munich, Munich, Germany;Division of Biomechanics, Department of Orthopaedic Surgery, Technische Universitaet Munich, Munich, Germany;Department of Orthopaedic Surgery, University of Rostock, Doberanerstr. 142, Rostock D-18057, Germany;Department of Neurology, Ludwig- Maximilians- Universitaet Munich, Munich, Germany | |
关键词: Meniscus scaffolds; Animal model; Biomechanics; Meniscus; | |
Others : 1129163 DOI : 10.1186/1471-2474-14-324 |
|
received in 2013-05-16, accepted in 2013-11-12, 发布年份 2013 | |
【 摘 要 】
Background
Loss of meniscal tissue is correlated with early osteoarthritis but few data exist regarding detailed biomechanical properties (e.g. viscoelastic behavior) of menisci in different species commonly used as animal models. The purpose of the current study was to biomechanically characterize bovine, ovine, and porcine menisci (each n = 6, midpart of the medial meniscus) and compare their properties to that of normal and degenerated human menisci (n = 6) and two commercially available artificial scaffolds (each n = 3).
Methods
Samples were tested in a cyclic, minimally constraint compression–relaxation test with a universal testing machine allowing the characterization of the viscoelastic properties including stiffness, residual force and relative sample compression. T-tests were used to compare the biomechanical parameters of all samples. Significance level was set at p < 0.05.
Results
Throughout cyclic testing stiffness, residual force and relative sample compression increased significantly (p < 0.05) in all tested meniscus samples. From the tested animal meniscus samples the ovine menisci showed the highest biomechanical similarity to human menisci in terms of stiffness (human: 8.54 N/mm ± 1.87, cycle 1; ovine: 11.24 N/mm ± 2.36, cycle 1, p = 0.0528), residual force (human: 2.99 N ± 0.63, cycle 1 vs. ovine 3.24 N ± 0.13, cycle 1, p = 0.364) and relative sample compression (human 19.92% ± 0.63, cycle 1 vs. 18.72% ± 1.84 in ovine samples at cycle 1, p = 0.162). The artificial constructs -as hypothesized- revealed statistically significant inferior biomechanical properties.
Conclusions
For future research the use of ovine meniscus would be desirable showing the highest biomechanical similarities to human meniscus tissue. The significantly different biomechanical properties of the artificial scaffolds highlight the necessity of cellular ingrowth and formation of extracellular matrix to gain viscoelastic properties. As a consequence, a period of unloading (at least partial weight bearing) is necessary, until the remodeling process in the scaffold is sufficient to withstand forces during weight bearing.
【 授权许可】
2013 Sandmann et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150226002436479.pdf | 848KB | download | |
Figure 6. | 51KB | Image | download |
Figure 5. | 83KB | Image | download |
Figure 4. | 41KB | Image | download |
Figure 3. | 57KB | Image | download |
Figure 2. | 54KB | Image | download |
Figure 1. | 40KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Aagaard H, Verdonk R: Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports 1999, 9(3):134-140.
- [2]Jones JC, Burks R, Owens BD, Sturdivant RX, Svoboda SJ, Cameron KL: Incidence and risk factors associated with meniscal injuries among active-duty US military service members. J Athl Train 2012, 47(1):67-73.
- [3]Petty CA, Lubowitz JH: Does arthroscopic partial meniscectomy result in knee osteoarthritis? A systematic review with a minimum of 8 years´follow-up. Arthroscopy 2011, 27(3):419-423.
- [4]Noble J, Hamblen DL: The pathology of the degenerate meniscus lesion. J Bone Joint Surg Br 1975, 57(2):180-186.
- [5]Roos H, Laurén M, Adalberth T, Roos EM, Jonsson K, Lohmander LS: Knee osteoarthtritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 1998, 41(4):687-693.
- [6]Hede A, Larsen E, Sandberg H: The long term outcome of open total and partial meniscectomy related to the quantity and site of the meniscus removed. Int Orthop 1992, 16(2):122-125.
- [7]Saltzman BM, Bajaj S, Salata M, Daley EL, Strauss E, Verma N, Cole BJ: Prospective long-term evaluation of meniscal allograft transplantation procedure: a minimum of 7-year follow-up. J Knee Surg 2012, 25(2):165-175.
- [8]Yoon JR, Kim TS, Wang JH, Yun HH, Lim H, Yang JH: Importance of independent measurement of width and length of lateral meniscus during preoperative sizing for meniscal allograft transplantation. Am J Sports Med 2011, 39(7):1541-1547.
- [9]Sandmann GH, Eichhorn S, Vogt S, Adamczyk C, Aryee S, Hoberg M, Milz S, Imhoff AB, Tischer T: Generation and characterization of a human acellular meniscus scaffold for tissue engineering. J Biomed Mater Res A 2009, 91(2):567-574.
- [10]Amin S, Niu J, Guermazi A, Grigoryan M, Hunter DJ, Clancy M, LaValley MP, Genant HK, Felson DT: Cigarette smoking and the risk for cartilage loss and knee pain in men with knee osteoarthritis. Ann Rheum Dis 2007, 66(1):18-22.
- [11]Binnet MS, Akan B, Kaya A: Lyophilised medial meniscus transplantation in ACL-deficient knees: a 19-year follow-up. Knee Surg Sports Traumatol Arthrosc 2012, 20:109-113.
- [12]Martinek V, Ueblacker P, Braeun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB: Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 2006, 126(4):228-234.
- [13]Petri M, Ufer K, Toma I, Becher C, Liodakis E, Brand S, Haas P, Liu C, Richter B, Haasper C, et al.: Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants. Knee Surg Sports Traumatol Arthrosc 2012, 20(2):223-231.
- [14]Zaffagnini S, Marcheggiani Mucciolli GM, Lopomo N, Bruni D, Giordano G, Ravazzolo G, Molinari M, Marcacci M: Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10-year follow-up study. Am J Sports Med 2011, 39(5):977-985.
- [15]Rodkey WG, DeHaven KE, Montgomery WH 3rd, Baker CL Jr, Beck CL Jr, Hormel SE, Steadman JR, Cole BJ, Briggs KK: Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 2008, 90(7):1413-1426.
- [16]Hirschmann MT, Keller L, Hirschmann A, Schenk L, Berbig R, Luthi U, Amsler F, Friederich NF, Arnold MP: One-year clinical and MR imaging outcome after partial meniscal replacement in stabilized knees using a collagen meniscus implant. Knee Surg Sports Traumatol Arthrosc 2013, 21(3):740-747.
- [17]Galley NK, Gleghorn JP, Rodeo S, Warren RF, Maher SA, Bonassar LJ: Frictional properties of the meniscus improve after scaffold-augmented repair of partial meniscectomy: a pilot study. Clin Orthop Relat Res 2011, 469(10):2817-2823.
- [18]Hannink G, van Tienen TG, Schouten AJ, Buma P: Changes in articular cartilage after meniscectomy and meniscus replacement using a biodegradable porous polymer implant. Knee Surg Sports Traumatol Arthrosc 2011, 19(3):441-451.
- [19]Verdonk P, Beaufils P, Bellemans J, Dijan P, Heinrichs EL, Huysse W, Laprell H, Siebold R, Verdonk R: Succesful treatment of painful irreparable partial meniscal deficits with a polyurethane scaffold: two- year safety and clinical outcomes. Am J Sports Med 2012, 40(4):844-853.
- [20]De Connick T, Huysse W, Willemot L, Verdonk R, Verstraete K, Verdonk P: Two-year follow-up study on clinical and radiological outcomes of polyurethane meniscal scaffolds. Am J Sports Med 2013, 41(1):64-72.
- [21]Messner K, Gao J: The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 1998, 193(Pt 2):161-178.
- [22]Makris EA, Hadidi P, Athanasiou KA: The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 2011, 32(30):7411-7431.
- [23]Fithian DC, Kelly MA, Mow VC: Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res 1990, 252:19-31.
- [24]Chevrier A, Nelea M, Hurtig MB, Hoemann CD, Buschmann MD: Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair. J Orthop Res 2009, 27(9):1197-1203.
- [25]Sweigart MA, Zhu CF, Burt DM, DeHoll PD, Agrawal CM, Clanton TO, Athanasiou KA: Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann Biomed Eng 2004, 32(11):1569-1579.
- [26]Joshi MD, Suh JK, Marui T, Woo SL: Interspecies variation of compressive biomechanical properties of the meniscus. J Biomed Mater Res 1995, 29(7):823-828.
- [27]Maes JA, Haut Donahue TL: Time dependent properties of bovine meniscal attachments: stress relaxation and creep. J Biomech 2006, 39(16):3055-3061.
- [28]Zantop T, Temmig K, Weimann A, Eggers AK, Raschke MJ, Petersen W: Elongation and structural properties of meniscal repair using suture techniques in distraction and shear force scenarios: biomechanical evaluation using a cyclic loading protocol. Am J Sports Med 2006, 34(5):799-805.
- [29]Staerke C, Brettschneider O, Grobel KH, Becker R: Tensile forces on sutures in the human lateral knee meniscus. Knee Surg Sports Traumatol Arthrosc 2009, 17(11):1354-1359.
- [30]Maier D, Braeun K, Steinhauser E, Ueblacker P, Oberst M, Kreuz PC, Roos N, Martinek V, Imhoff AB: In vitro analysis of an allogenic scaffold for tissue-engineered meniscus replacement. J Orthop Res 2007, 25(12):1598-1608.
- [31]Brophy RH, Cottrell J, Rodeo SA, Wright TM, Warren RF, Maher SA: Implantation of a synthetic meniscal scaffold improves joint contact mechanics in a partial meniscectomy cadaver model. J Biomed Mater Res A 2010, 92(3):1154-1161.
- [32]Reguzzoni M, Manelli A, Ronga M, Raspanti M, Grassi FA: Histology and ultrastructure of a tissue-engineered collagen meniscus before and after implantation. J Biomed Mater Res B Appl Biomater 2005, 74(2):808-816.
- [33]Welsing RT, van Tienen TG, Ramrattan N, Heijkants R, Schouten AJ, Veth RP, Buma P: Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant: a 2-year follow-up study in dogs. Am J Sports Med 2008, 36(10):1978-1989.
- [34]Maher SA, Rodeo SA, Doty SB, Brophy R, Potter H, Foo LF, Rosenblatt L, Deng XH, Turner AS, Wright TM, et al.: Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy 2010, 26(11):1510-1519.
- [35]Osterhoff G, Loffler S, Steinke H, Feja C, Josten C, Hepp P: Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee 2011, 18(2):98-103.
- [36]Tischer T, Ronga M, Tsai A, Ingham SJ, Ekdahl M, Smolinski P, Fu FH: Biomechanics of the goat three bundle anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 2009, 17(8):935-940.
- [37]Dye SF: An evolutionary perspective of the knee. J Bone Joint Surg Am 1987, 69(7):976-983.
- [38]Bogey RA, Barnes LA, Perry J: Computer algorithms to characterize individual subject EMG profiles during gait. Arch Phys Med Rehabil 1992, 73(9):835-841.
- [39]Zellner J, Hierl K, Mueller M, Pfeifer C, Berner A, Dienstknecht T, Krutsch W, Geis S, Gehmert S, Kujat R, et al.: Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater 2013, 101(7):1133-1142.
- [40]Naumann A, Dennis JE, Awadallah A, Carrino DA, Mansour JM, Kastenbauer E, Caplan AI: Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J Histochem Cytochem 2002, 50(8):1049-1058.