期刊论文详细信息
BMC Medical Genomics
An integrated transcriptome and epigenome analysis identifies a novel candidate gene for pancreatic cancer
Laufey T Amundadottir7  Gloria M Petersen3  Udo Rudloff6  Snorri S Thorgeirsson1  John Powell2  Zhaoming Wang5  Weiyin Zhou5  Irene Collins7  Xuelu Liu4  Holger Pflicke6  Jason W Hoskins7  Wenming Xiao2  Hemang Parikh7  Jinping Jia7 
[1] Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, MD 20892, USA;Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bioinformatics and Molecular Analysis Section, Bethesda, MD 20892, USA;Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA;SRA International, Fairfax, VA 22033, USA;Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
关键词: ALDH1A3;    Sequencing;    Epigenome;    Transcriptome;    Pancreatic cancer;   
Others  :  1092086
DOI  :  10.1186/1755-8794-6-33
 received in 2013-03-27, accepted in 2013-09-16,  发布年份 2013
PDF
【 摘 要 】

Background

Pancreatic cancer is a highly lethal cancer with limited diagnostic and therapeutic modalities.

Methods

To begin to explore the genomic landscape of pancreatic cancer, we used massively parallel sequencing to catalog and compare transcribed regions and potential regulatory elements in two human cell lines derived from normal and cancerous pancreas.

Results

By RNA-sequencing, we identified 2,146 differentially expressed genes in these cell lines that were enriched in cancer related pathways and biological processes that include cell adhesion, growth factor and receptor activity, signaling, transcription and differentiation. Our high throughput Chromatin immunoprecipitation (ChIP) sequence analysis furthermore identified over 100,000 regions enriched in epigenetic marks, showing either positive (H3K4me1, H3K4me3, RNA Pol II) or negative (H3K27me3) correlation with gene expression. Notably, an overall enrichment of RNA Pol II binding and depletion of H3K27me3 binding were seen in the cancer derived cell line as compared to the normal derived cell line. By selecting genes for further assessment based on this difference, we confirmed enhanced expression of aldehyde dehydrogenase 1A3 (ALDH1A3) in two larger sets of pancreatic cancer cell lines and in tumor tissues as compared to normal derived tissues.

Conclusions

As aldehyde dehydrogenase (ALDH) activity is a key feature of cancer stem cells, our results indicate that a member of the ALDH superfamily, ALDH1A3, may be upregulated in pancreatic cancer, where it could mark pancreatic cancer stem cells.

【 授权许可】

   
2013 Jia et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128180256162.pdf 884KB PDF download
Figure 3. 77KB Image download
Figure 2. 84KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin 2010, 60(5):277-300.
  • [2]Ferlay J, Bray F, Pisani P, Parkin DM: GLOBOCAN 2002: cancer incidence, mortality and prevalence worldwide. Lyon: IARC Press; 2004.
  • [3]Scarlett CJ, Salisbury EL, Biankin AV, Kench J: Precursor lesions in pancreatic cancer: morphological and molecular pathology. Pathology 2011, 43(3):183-200.
  • [4]Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et al.: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008, 321(5897):1801-1806.
  • [5]Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, Morsberger LA, Latimer C, McLaren S, Lin ML, et al.: The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010, 467(7319):1109-1113.
  • [6]Gronbaek K, Hother C, Jones PA: Epigenetic changes in cancer. APMIS 2007, 115(10):1039-1059.
  • [7]Herman JG, Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003, 349(21):2042-2054.
  • [8]Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293(5532):1074-1080.
  • [9]Omura N, Li CP, Li A, Hong SM, Walter K, Jimeno A, Hidalgo M, Goggins M: Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 2008, 7(7):1146-1156.
  • [10]Sato N, Goggins M: The role of epigenetic alterations in pancreatic cancer. J Hepatobiliary Pancreat Surg 2006, 13(4):286-295.
  • [11]Vincent A, Omura N, Hong SM, Jaffe A, Eshleman J, Goggins M: Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clinical cancer research: an official journal of the American Association for Cancer Research 2011, 17(13):4341-4354.
  • [12]Lee KM, Yasuda H, Hollingsworth MA, Ouellette MM: Notch 2-positive progenitors with the intrinsic ability to give rise to pancreatic ductal cells. Laboratory investigation; a journal of technical methods and pathology 2005, 85(8):1003-1012.
  • [13]Lee KM, Nguyen C, Ulrich AB, Pour PM, Ouellette MM: Immortalization with telomerase of the Nestin-positive cells of the human pancreas. Biochem Biophys Res Commun 2003, 301(4):1038-1044.
  • [14]Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G: Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 1975, 15(5):741-747.
  • [15]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
  • [16]Larsson TP, Murray CG, Hill T, Fredriksson R, Schioth HB: Comparison of the current RefSeq, Ensembl and EST databases for counting genes and gene discovery. FEBS Lett 2005, 579(3):690-698.
  • [17]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [18]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
  • [19]Ronen R, Gan I, Modai S, Sukacheov A, Dror G, Halperin E, Shomron N: miRNAkey: a software for microRNA deep sequencing analysis. Bioinformatics 2010, 26(20):2615-2616.
  • [20]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39:D152-157.
  • [21]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
  • [22]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology: the gene ontology consortium. Nat Genet 2000, 25(1):25-29.
  • [23]Young MD, Wakefield MJ, Smyth GK, Oshlack A: Gene ontology analysis for RNA-seq: accounting for selection bias. Genome biology 2010, 11(2):R14. BioMed Central Full Text
  • [24]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biology 2009, 10(3):R25. BioMed Central Full Text
  • [25]Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W: A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 2009, 25(15):1952-1958.
  • [26]Shin H, Liu T, Manrai AK, Liu XS: CEAS: cis-regulatory element annotation system. Bioinformatics 2009, 25(19):2605-2606.
  • [27]Pique-Regi R, Caceres A, Gonzalez JR: R-Gada: a fast and flexible pipeline for copy number analysis in association studies. BMC bioinformatics 2010, 11:380. BioMed Central Full Text
  • [28]Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, Hutchinson A, Deng X, Liu C, Horner MJ, et al.: Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 2012, 44(6):651-658.
  • [29]Guescini M, Sisti D, Rocchi MB, Stocchi L, Stocchi V: A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplification inhibition. BMC bioinformatics 2008, 9:326. BioMed Central Full Text
  • [30]Raney BJ, Cline MS, Rosenbloom KR, Dreszer TR, Learned K, Barber GP, Meyer LR, Sloan CA, Malladi VS, Roskin KM, et al.: ENCODE whole-genome data in the UCSC genome browser (2011 update). Nucleic Acids Res 2011, 39:D871-875.
  • [31]Humke EW, Dorn KV, Milenkovic L, Scott MP, Rohatgi R: The output of hedgehog signaling is controlled by the dynamic association between suppressor of fused and the Gli proteins. Genes Dev 2010, 24(7):670-682.
  • [32]Lee DY, Deng Z, Wang CH, Yang BB: MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 2007, 104(51):20350-20355.
  • [33]Morris JP, Wang SC, Hebrok M: KRAS, hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 2010, 10(10):683-695.
  • [34]Park JY, Helm J, Coppola D, Kim D, Malafa M, Kim SJ: MicroRNAs in pancreatic ductal adenocarcinoma. World J Gastroenterol 2011, 17(7):817-827.
  • [35]Yu J, Li A, Hong SM, Hruban RH, Goggins M: MicroRNA alterations of pancreatic intraepithelial neoplasms (PanINs). Clinical cancer research 2012, 18(4):981-992.
  • [36]Munding JB, Adai AT, Maghnouj A, Urbanik A, Zollner H, Liffers ST, Chromik AM, Uhl W, Szafranska-Schwarzbach AE, Tannapfel A, et al.: Global microRNA expression profiling of microdissected tissues identifies miR-135b as a novel biomarker for pancreatic ductal adenocarcinoma. International journal of cancer 2011, 131(2):E86-E95.
  • [37]Han Y, Chen J, Zhao X, Liang C, Wang Y, Sun L, Jiang Z, Zhang Z, Yang R, Li Z, et al.: MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PloS one 2011, 6(3):e18286.
  • [38]Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M, et al.: Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006, 5:29.
  • [39]Jiang L, Mao P, Song L, Wu J, Huang J, Lin C, Yuan J, Qu L, Cheng SY, Li J: miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol 2010, 177(1):29-38.
  • [40]Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K: Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. International journal of cancer Journal international du cancer 2010, 126(5):1166-1176.
  • [41]Necela BM, Carr JM, Asmann YW, Thompson EA: Differential expression of microRNAs in tumors from chronically inflamed or genetic (APC(Min/+)) models of colon cancer. PloS one 2011, 6(4):e18501.
  • [42]Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, et al.: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 2008, 18(4):610-621.
  • [43]Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, et al.: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007, 39(3):311-318.
  • [44]Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell 2007, 129(4):823-837.
  • [45]Marchitti SA, Brocker C, Stagos D, Vasiliou V: Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert opinion on drug metabolism & toxicology 2008, 4(6):697-720.
  • [46]Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S, et al.: Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PloS one 2010, 5(4):e10277.
  • [47]Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al.: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell stem cell 2007, 1(5):555-567.
  • [48]Li Y, Kong D, Ahmad A, Bao B, Sarkar FH: Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer letters 2013, 338(1):94-100.
  • [49]Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, Hong SM, Koorstra JB, Rajeshkumar NV, He X, et al.: Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 2010, 102(5):340-351.
  • [50]Marcato P, Dean CA, Giacomantonio CA, Lee PW: Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 2011, 10(9):1378-1384.
  • [51]Marcato P, Dean CA, Pan D, Araslanova R, Gillis M, Joshi M, Helyer L, Pan L, Leidal A, Gujar S, et al.: Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 2011, 29(1):32-45.
  文献评价指标  
  下载次数:70次 浏览次数:43次