期刊论文详细信息
BMC Infectious Diseases
Time series analysis of dengue incidence in Guadeloupe, French West Indies: Forecasting models using climate variables as predictors
Laurence Marrama3  Laurent Girdary3  Guy La Ruche2  Sylvie Cassadou1  Joël Gustave4  Philippe Quenel1  Myriam Gharbi3 
[1]Regional office of the French Institute for Public Health Surveillance (Cire Antilles - Guyane), Fort-de-France, Martinique, France
[2]International and Tropical Department, French Institute for Public Health Surveillance (InVS), Saint-Maurice, France
[3]Research Unit "Epidemiology and Transmission of Emerging diseases", Institut Pasteur of Guadeloupe, Guadeloupe, France
[4]Department of Health and Social Development, Vector Control Department, Guadeloupe, France
关键词: America region;    Guadeloupe;    Climate;    Forecasting;    SARIMA models;    Time series analysis;    Dengue fever;   
Others  :  1175683
DOI  :  10.1186/1471-2334-11-166
 received in 2010-10-08, accepted in 2011-06-09,  发布年份 2011
PDF
【 摘 要 】

Background

During the last decades, dengue viruses have spread throughout the Americas region, with an increase in the number of severe forms of dengue. The surveillance system in Guadeloupe (French West Indies) is currently operational for the detection of early outbreaks of dengue. The goal of the study was to improve this surveillance system by assessing a modelling tool to predict the occurrence of dengue epidemics few months ahead and thus to help an efficient dengue control.

Methods

The Box-Jenkins approach allowed us to fit a Seasonal Autoregressive Integrated Moving Average (SARIMA) model of dengue incidence from 2000 to 2006 using clinical suspected cases. Then, this model was used for calculating dengue incidence for the year 2007 compared with observed data, using three different approaches: 1 year-ahead, 3 months-ahead and 1 month-ahead. Finally, we assessed the impact of meteorological variables (rainfall, temperature and relative humidity) on the prediction of dengue incidence and outbreaks, incorporating them in the model fitting the best.

Results

The 3 months-ahead approach was the most appropriate for an effective and operational public health response, and the most accurate (Root Mean Square Error, RMSE = 0.85). Relative humidity at lag-7 weeks, minimum temperature at lag-5 weeks and average temperature at lag-11 weeks were variables the most positively correlated to dengue incidence in Guadeloupe, meanwhile rainfall was not. The predictive power of SARIMA models was enhanced by the inclusion of climatic variables as external regressors to forecast the year 2007. Temperature significantly affected the model for better dengue incidence forecasting (p-value = 0.03 for minimum temperature lag-5, p-value = 0.02 for average temperature lag-11) but not humidity. Minimum temperature at lag-5 weeks was the best climatic variable for predicting dengue outbreaks (RMSE = 0.72).

Conclusion

Temperature improves dengue outbreaks forecasts better than humidity and rainfall. SARIMA models using climatic data as independent variables could be easily incorporated into an early (3 months-ahead) and reliably monitoring system of dengue outbreaks. This approach which is practicable for a surveillance system has public health implications in helping the prediction of dengue epidemic and therefore the timely appropriate and efficient implementation of prevention activities.

【 授权许可】

   
2011 Gharbi et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150428042917606.pdf 683KB PDF download
Figure 6. 49KB Image download
Figure 5. 35KB Image download
Figure 4. 29KB Image download
Figure 3. 36KB Image download
Figure 2. 39KB Image download
Figure 1. 166KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Lambrechts L, Scott TW, Gubler DJ: Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 2010, 4:1-9.
  • [2]World Health Organisation. Dengue: [http://whqlibdoc.who.int/publications/2009/9789241547871_eng.pdf] webciteGuidelines for diagnosis, treatment, prevention and control. New Edition; 2009.
  • [3]Gubler DJ: Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp 2006, 277:3-16.
  • [4]World Health Organization: [http://www.wpro.who.int/internet/files/mvp/Dengue_Report.pdf] webciteAsia-Pacific dengue program managers meeting. Manila Western Pacific Region; 2008.
  • [5]Halstead SB: Dengue in the Americas and Southeast Asia: do they differ? Rev Panam Salud Publica 2006, 20:407-415.
  • [6]Quénel P, Dussart P, Marrama L, Nacher M, Setbon M, Vergu E: Contributions de la recherche virologique, clinique, épidémiologique, socio comportementale et en modélisation mathématique au contrôle de la dengue dans les DFA. [http:/ / www.invs.sante.fr/ publications/ bvs/ antilles_guyane/ 2009/ bvs_ag_2009_03.pdf] webciteBulletin de veille sanitaire 2009, 3:1-16.
  • [7]Wilson ME, Chen LH: Dengue in the Americas. Dengue Bull 2002, 26:44-61.
  • [8]Torres JR, Castro J: The Health and economic impact of dengue in Latin America. Cad Saude Publica 2007, 22(Suppl 1):S23-S31.
  • [9]Cire Antilles-Guyane: Integrated management strategy for dengue prevention and control in the Caribbean subregion. [http:/ / www.invs.sante.fr/ publications/ bvs/ antilles_guyane/ 2009/ bvs_ag_2009_08.pdf] webciteBulletin de veille sanitaire Antilles Guyane 2009, 8:2-15.
  • [10]Gubler DJ: Dengue and dengue hemorrhagic fever. Clinical microbiology reviews 1998, 11:480-496.
  • [11]Focks DA, Haile DG, Daniels E, Mount GA: Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol 1993, 30:1003-1017.
  • [12]Focks DA, Daniels E, Haile DG, Keesling JE: A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 1995, 53:489-506.
  • [13]Barbazan P, Yoksan S, Gonzalez JP: Dengue hemorrhagic fever epidemiology in Thailand: description and forecasting of epidemics. Microbes Infect 2002, 4:699-705.
  • [14]Otero M, Solari HG: Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math Biosci 2010, 223:32-46.
  • [15]Bartley LM, Donnelly CA, Garnett GP: The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms. Trans R Soc Trop Med Hyg 2002, 96:387-397.
  • [16]Wearing HJ, Rohani P: Ecological and immunological determinants of dengue epidemics. Proc Natl Acad Sci USA 2006, 103:11802-11807.
  • [17]Esteva L, Vargas C: A model for dengue disease with variable human population. J Math Biol 1999, 38:220-240.
  • [18]Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA: Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 2001, 109(Suppl 2):223-233.
  • [19]Focks D, Alexander N, Villegas E: Multicountry study of Aedes aegypti pupal productivity survey methodology: Findings and recommendations. Dengue bulletin WHO 2007, 31:192-200.
  • [20]Nakhapakorn K, Tripathi NK: An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int J Health Geogr 2005, 4:13. BioMed Central Full Text
  • [21]Arcari P, Tapper N, Pfueller S: Regional variability in relationships between climate and dengue/DHF in Indonesia. Singapore Journal of Tropical Geography 2007, 28:251-272.
  • [22]Bangs M, Larasati R, Corwin A, Wuryadi S, Jakarta I: Climatic factors associated with epidemic dengue in Palembang, Indonesia: implications of short-term meteorological events on virus transmission. Southeast Asian Journal of Tropical Medicine and Public Health 2006, 37:1103-1116.
  • [23]Corwin A, Larasati R, Bangs M, Wuryadi S, Arjoso S, Sukri N, Listyaningsih E, Hartati S, Namursa R, Anwar Z: Epidemic dengue transmission in southern Sumatra, Indonesia. Transactions of the Royal Society of Tropical Medicine and Hygiene 2001, 95:257-265.
  • [24]Burattini M, Chen M, Chow A, Coutinho F, Goh K, Lopez L, Ma S, Massad E: Modelling the control strategies against dengue in Singapore. Epidemiology and Infection 2007, 136:309-319.
  • [25]Chowell G, Sanchez F: Climate-based descriptive models of dengue fever: the 2002 epidemic in Colima, Mexico. Journal of environmental health 2006, 68:40-44.
  • [26]Keating J: An investigation into the cyclical incidence of dengue fever. Social Science & Medicine 2001, 53:1587-1597.
  • [27]Chen SC, Liao CM, Chio CP, Chou HH, You SH, Cheng YH: Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: Insights from a statistical analysis. Sci Total Environ 2010, 408:4069-4075.
  • [28]Chadee D, Shivnauth B, Rawlins S, Chen A: Climate, mosquito indices and the epidemiology of dengue fever in Trinidad (2002-2004). Annals of tropical medicine and parasitology 2007, 101:69-77.
  • [29]Barrera R, Delgado N, Jiménez M, Villalobos I, Romero I: Stratification of a city with hyperendemic dengue hemorrhagic fever. Revista Panamericana de Salud Pública 2000, 8:225-233.
  • [30]Depradine C, Lovell E: Climatological variables and the incidence of Dengue fever in Barbados. Int J Environ Health Res 2004, 14:429-441.
  • [31]World Health Organization: [http://www.who.int/globalchange/publications/en/oeh0401.pdf] webciteUsing climate to predict Infectious Disease Outbreaks: A review. Geneva; 2004.
  • [32]Helfenstein U: The use of transfer function models, intervention analysis and related time series methods in epidemiology. Int J Epidemiol 1991, 20:808-815.
  • [33]Choi K, Thacker SB: An evaluation of influenza mortality surveillance, 1962-1979. I. Time series forecasts of expected pneumonia and influenza deaths. Am J Epidemiol 1981, 113:215-226.
  • [34]Allard R: Use of time-series analysis in infectious disease surveillance. Bull World Health Organ 1998, 76:327-333.
  • [35]Nobre FF, Monteiro AB, Telles PR, Williamson GD: Dynamic linear model and SARIMA: a comparison of their forecasting performance in epidemiology. Stat Med 2001, 20:3051-3069.
  • [36]Trottier H, Philippe P, Roy R: Stochastic modeling of empirical time series of childhood infectious diseases data before and after mass vaccination. Emerg Themes Epidemiol 2006, 3:9-24. BioMed Central Full Text
  • [37]Quénel P, Dab W: Influenza A and B epidemic criteria based on time-series analysis of surveillance data. European Journal of Epidemiology 1999, 14:275-285.
  • [38]Wu PC, Guo HR, Lung SC, Lin CY, Su HJ: Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop 2007, 103:50-57.
  • [39]Luz PM, Mendes BV, Codeco CT, Struchiner CJ, Galvani AP: Time series analysis of dengue incidence in Rio de Janeiro, Brazil. Am J Trop Med Hyg 2008, 79:933-939.
  • [40]Chaud P, Blateau A, Decludt B, Lamaury I, Strobel M, Talarmin A, Yebakima A: [http://www.invs.sante.fr/publications/basag/basag2008_10.pdf] webciteGuidelines for surveillance of dengue fever in the French Departments of America. Martinique, Guadeloupe, Guyane; 1999.
  • [41]Cassadou S: Le réseau de médecins sentinelles en Guadeloupe. [http://www.invs.sante.fr/publications/basag/basag2008_10.pdf] webciteBulletin d'Alerte et de Surveillance Antilles Guyane 2008, 10:3-4.
  • [42]Box G, Jenkins G, Reinsel G: Time series analysis: forecasting and control. San Francisco:Holden-day; 1976.
  • [43]Ljung G, Box G: On a measure of lack of fit in time series models. Biometrika 1978, 65:297-303.
  • [44]Helfenstein U: Box-Jenkins modelling of some viral infectious diseases. Stat Med 1986, 5:37-47.
  • [45]Hales S, de Wet N, Maindonald J, Woodward A: Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 2002, 360:830-834.
  • [46]Hales S, Weinstein P, Souares Y, Woodward A: El Niño and the dynamics of vectorborne disease transmission. Environ Health Perspect 1999, 107:99-102.
  • [47]Brunkard JM, Cifuentes E, Rothenberg SJ: Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. Salud Publica 2008, 50:227-34.
  • [48]CIRE Antilles-Guyane: Préparations épidémiologiques aux catastrophes naturelles. [http://www.invs.sante.fr/publications/basag/Basag2008_9.pdf] webciteBulletin d'Alerte et de Surveillance Antilles Guyane 2008, 9:1-11.
  • [49]Woodruff RE, Guest CS, Garner MG, Becker N, Lindesay J, Carvan T, Ebi K: Predicting Ross River virus epidemics from regional weather data. Epidemiology 2002, 13:384-393.
  • [50]Kelly-Hope LA, Purdie DM, Kay BH: Ross River virus disease in Australia, 1886-1998, with analysis of risk factors associated with outbreaks. J Med Entomol 2004, 41:133-150.
  • [51]Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD: Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol 2000, 37:77-88.
  • [52]Morrison A, Costero A, Edman J, Clark G, Scott T: Increased fecundity of Aedes aegypti fed human blood before release in a mark-recapture study in Puerto Rico. Journal of the American Mosquito Control Association 1999, 15:98-104.
  • [53]Nayar J: Aedes aegypti (L.)(Diptera: Culicidae): Observations on dispersal, survival, insemination, ovarian development and oviposition characteristics of a Florida population. J Fla Anti-Mosquito Assoc 1981, 52:24-40.
  • [54]Reiter P, Rodhain F: Oviposition et dispersion d'Aedes aegypti dans l'environnement urbain. Discussion. Bulletin de la Société de pathologie exotique 1996, 89:120-122.
  • [55]Tun-Lin W, Burkot TR, Kay BH: Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 2000, 14:31-37.
  • [56]Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD: Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 2000, 37:89-101.
  • [57]Rowley WA, Graham CL: The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J Insect Physiol 1968, 14:1251-1257.
  • [58]McMichael A, Haines A, Slooff R, Kovats R: Climate change and human health: an assessment by a task group on behalf of the World Health Organization, the World Meteorological Organization and the United Nations Environment Programme. Geneva: World Health Organization; 1996.
  • [59]Thu HM, Aye KM, Thein S: The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitos. Southeast Asian J Trop Med Public Health 1998, 29:280-284.
  • [60]Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A: Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 1987, 36:143-152.
  • [61]Lu L, Lin H, Tian L, Yang W, Sun J, Liu Q: Time series analysis of dengue fever and weather in Guangzhou, China. BMC Public Health 2009, 9:395-400. BioMed Central Full Text
  • [62]Serfling R: Methods for current statistical analysis of excess pneumonia-influenza deaths. Public Health Reports 1963, 78:494-506.
  • [63]Cire Antilles-Guyane: Elaboration d'un critère d'alerte pour la détection précoce des épidémies de dengue dans les Antilles françaises. [http://www.invs.sante.fr/publications/basag/Basag2008-4.pdf] webciteBulletin d'Alerte et de Surveillance Antilles Guyane 2008, 4:5-8.
  文献评价指标  
  下载次数:123次 浏览次数:87次