期刊论文详细信息
BMC Medical Genetics
Mapping the deletion endpoints in individuals with 22q11.2 Deletion Syndrome by droplet digital PCR
Flora Tassone3  Tony J Simon1  Kathleen Angkustsiri5  John Regan4  Dianna Maar4  Vicki J Hwang2 
[1] Department of Psychiatry, UC Davis Medical Center, Sacramento, CA, USA;Department of Biochemistry and Molecular Medicine, UC Davis, 2700 Stockton Blvd, Suite 2102, Sacramento 95817, CA, USA;MIND Institute, UC Davis Medical Center, Wet Lab Room 2418, 2805 50th Street, Sacramento 95817, CA, USA;Digital Biology Center, Bio-Rad Laboratories, 5731 West Las Positas Blvd, Pleasanton, CA, USA;Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
关键词: LCR;    copy number;    qPCR;    22q11DS;    Droplet digital PCR;   
Others  :  1090404
DOI  :  10.1186/s12881-014-0106-5
 received in 2014-06-07, accepted in 2014-09-09,  发布年份 2014
PDF
【 摘 要 】

Background

Chromosome 22q11.2 deletion syndrome (22q11DS) is the most common human microdeletion syndrome and is associated with many cognitive, neurological and psychiatric disorders. The majority of individuals have a 3 Mb deletion while others have a nested 1.5 Mb deletion, but rare atypical deletions have also been described. To date, a study using droplet digital PCR (ddPCR) has not been conducted to systematically map the chromosomal breakpoints in individuals with 22q11DS, which would provide important genotypic insight into the various phenotypes observed in this syndrome.

Methods

This study uses ddPCR to assess copy number (CN) changes within the chromosome 22q11 deletion region and allows the mapping of the deletion endpoints. We used eight TaqMan assays interspersed throughout the deleted region of 22q11.2 to characterize the deleted region of chromosome 22 in 80 individuals known to have 22q11DS by FISH. Ten EvaGreen assays were used for finer mapping of the six identified individuals with 22q11DS atypical deletions and covering different regions of chromosome 22.

Results

ddPCR provided non-ambiguous CN measurements across the region, confirmed the presence of the deletion in the individuals screened, and led to the identification of five differently sized and located deletions. The majority of the participants (n = 74) had the large 3 Mb deletions, whereas three had the smaller 1.5 Mb deletions, and the remaining three had an interstitial deletion of different size.

Conclusions

The lower cost, rapid execution and high reliability and specificity provided by ddPCR for CN measurements in the 22q11 region constitutes a significant improvement over the variable CN values generated by other technologies. The ability of the ddPCR approach, to provide a high resolution mapping of deletion endpoints may result in the identification of genes that are haplo-insufficient and play a role in the pathogenesis of 22q11DS. Finally, this methodology can be applied to the characterization of other microdeletions throughout the genome.

【 授权许可】

   
2014 Hwang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128160707782.pdf 1259KB PDF download
Figure 4. 69KB Image download
Figure 3. 60KB Image download
Figure 2. 57KB Image download
Figure 1. 24KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Botto LD, May K, Fernhoff PM, Correa A, Coleman K, Rasmussen SA, Merritt RK, O’Leary LA, Wong LY, Elixson EM, Mahle WT, Campbell RM: A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics 2003, 112(1 Pt 1):101-107.
  • [2]Goodship J, Cross I, LiLing J, Wren C: A population study of chromosome 22q11 deletions in infancy. Arch Dis Child 1998, 79(4):348-351.
  • [3]Tezenas Du Montcel S, Mendizabai H, Ayme S, Levy A, Philip N: Prevalence of 22q11 microdeletion. J Med Genet 1996, 33(8):719.
  • [4]Wilson DI, Burn J, Scambler P, Goodship J: DiGeorge syndrome: part of CATCH 22. J Med Genet 1993, 30(10):852-856.
  • [5]McDonald-McGinn DM, Sullivan KE: Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine 2011, 90(1):1-18.
  • [6]Edelmann L, Pandita RK, Spiteri E, Funke B, Goldberg R, Palanisamy N, Chaganti RS, Magenis E, Shprintzen RJ, Morrow BE: A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet 1999, 8(7):1157-1167.
  • [7]Shaikh TH, Kurahashi H, Emanuel BS: Evolutionarily conserved low copy repeats (LCRs) in 22q11 mediate deletions, duplications, translocations, and genomic instability: an update and literature review. Genet Med: Off J Am College Med Genet 2001, 3(1):6-13.
  • [8]Oskarsdottir S: Incidence and prevalence of the 22q11 deletion syndrome: a population-based study in Western Sweden. Arch Dis Child 2004, 89(2):148-151.
  • [9]Kobrynski LJ, Sullivan KE: Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet 2007, 370(9596):1443-1452.
  • [10]Carlson C, Sirotkin H, Pandita R, Goldberg R, McKie J, Wadey R, Patanjali SR, Weissman SM, Anyane-Yeboa K, Warburton D, Scambler P, Shprintzen R, Kucherlapati R, Morrow BE: Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients. Am J Hum Genet 1997, 61(3):620-629.
  • [11]Garcia-Minaur S, Fantes J, Murray RS, Porteous ME, Strain L, Burns JE, Stephen J, Warner JP: A novel atypical 22q11.2 distal deletion in father and son. J Med Genet 2002, 39(10):E62.
  • [12]Rauch A, Zink S, Zweier C, Thiel CT, Koch A, Rauch R, Lascorz J, Huffmeier U, Weyand M, Singer H, Hofbeck M: Systematic assessment of atypical deletions reveals genotype-phenotype correlation in 22q11.2. J Med Genet 2005, 42(11):871-876.
  • [13]Rauch A, Pfeiffer RA, Leipold G, Singer H, Tigges M, Hofbeck M: A novel 22q11.2 microdeletion in DiGeorge syndrome. Am J Hum Genet 1999, 64(2):659-666.
  • [14]Amati F, Conti E, Novelli A, Bengala M, Diglio MC, Marino B, Giannotti A, Gabrielli O, Novelli G, Dallapiccola B: Atypical deletions suggest five 22q11.2 critical regions related to the DiGeorge/velo-cardio-facial syndrome. Eur J Hum Genet 1999, 7(8):903-909.
  • [15]Kurahashi H, Tsuda E, Kohama R, Nakayama T, Masuno M, Imaizumi K, Kamiya T, Sano T, Okada S, Nishisho I: Another critical region for deletion of 22q11: a study of 100 patients. Am J Med Genet 1997, 72(2):180-185.
  • [16]Wieser R, Fritz B, Ullmann R, Muller I, Galhuber M, Storlazzi CT, Ramaswamy A, Christiansen H, Shimizu N, Rehder H: Novel rearrangement of chromosome band 22q11.2 causing 22q11 microdeletion syndrome-like phenotype and rhabdoid tumor of the kidney. Hum Mutat 2005, 26(2):78-83.
  • [17]O’Donnell H, McKeown C, Gould C, Morrow B, Scambler P: Detection of an atypical 22q11 deletion that has no overlap with the DiGeorge syndrome critical region. Am J Hum Genet 1997, 60(6):1544-1548.
  • [18]Saitta SC, McGrath JM, Mensch H, Shaikh TH, Zackai EH, Emanuel BS: A 22q11.2 deletion that excludes UFD1L and CDC45L in a patient with conotruncal and craniofacial defects. Am J Hum Genet 1999, 65(2):562-566.
  • [19]Lu JH, Chung MY, Betau H, Chien HP, Lu JK: Molecular characterization of tetralogy of fallot within Digeorge critical region of the chromosome 22. Pediatr Cardiol 2001, 22(4):279-284.
  • [20]Yamagishi H, Garg V, Matsuoka R, Thomas T, Srivastava D: A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science 1999, 283(5405):1158-1161.
  • [21]Kurahashi H, Nakayama T, Osugi Y, Tsuda E, Masuno M, Imaizumi K, Kamiya T, Sano T, Okada S, Nishisho I: Deletion mapping of 22q11 in CATCH22 syndrome: identification of a second critical region. Am J Hum Genet 1996, 58(6):1377-1381.
  • [22]Verhoeven W, Egger J, Brunner H, de Leeuw N: A patient with a de novo distal 22q11.2 microdeletion and anxiety disorder. Am J Med Genet 2011, 155A(2):392-397.
  • [23]Ben-Shachar S, Ou Z, Shaw CA, Belmont JW, Patel MS, Hummel M, Amato S, Tartaglia N, Berg J, Sutton VR, Lalani SR, Chinault AC, Cheung SW, Lupski JR, Patel A: 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am J Hum Genet 2008, 82(1):214-221.
  • [24]McQuade L, Christodoulou J, Budarf M, Sachdev R, Wilson M, Emanuel B, Colley A: Patient with a 22q11.2 deletion with no overlap of the minimal DiGeorge syndrome critical region (MDGCR). Am J Med Genet 1999, 86(1):27-33.
  • [25]Rodningen OK, Prescott T, Eriksson AS, Rosby O: 1.4Mb recurrent 22q11.2 distal deletion syndrome, two new cases expand the phenotype. Eur J Med Genet 2008, 51(6):646-650.
  • [26]Newbern J, Zhong J, Wickramasinghe RS, Li X, Wu Y, Samuels I, Cherosky N, Karlo JC, O’Loughlin B, Wikenheiser J, Gargesha M, Doughman YQ, Charron J, Ginty DD, Watanabe M, Saitta SC, Snider WD, Landreth GE: Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proc Natl Acad Sci USA 2008, 105(44):17115-17120.
  • [27]Verhagen JM, Diderich KE, Oudesluijs G, Mancini GM, Eggink AJ, Verkleij-Hagoort AC, Groenenberg IA, Willems PJ, du Plessis FA, de Man SA, Srebniak MI, van Opstal D, Hulsman LO, van Zutven LJ, Wessels MW: Phenotypic variability of atypical 22q11.2 deletions not including TBX1. Am J Med Genet 2012, 158A(10):2412-2420.
  • [28]Breckpot J, Thienpont B, Bauters M, Tranchevent LC, Gewillig M, Allegaert K, Vermeesch JR, Moreau Y, Devriendt K: Congenital heart defects in a novel recurrent 22q11.2 deletion harboring the genes CRKL and MAPK1. Am J Med Genet 2012, 158A(3):574-580.
  • [29]Ogilvie CM, Ahn JW, Mann K, Roberts RG, Flinter F: A novel deletion in proximal 22q associated with cardiac septal defects and microcephaly: a case report. Mol Cytogenet 2009, 2:9. BioMed Central Full Text
  • [30]D’Angelo CS, Jehee FS, Koiffmann CP: An inherited atypical 1 Mb 22q11.2 deletion within the DGS/VCFS 3 Mb region in a child with obesity and aggressive behavior. Am J Med Genet 2007, 143A(16):1928-1932.
  • [31]Mikhail FM, Descartes M, Piotrowski A, Andersson R, de Diaz Stahl T, Komorowski J, Bruder CE, Dumanski JP, Carroll AJ: A previously unrecognized microdeletion syndrome on chromosome 22 band q11.2 encompassing the BCR gene. Am J Med Genet 2007, 143A(18):2178-2184.
  • [32]Fernandez L, Nevado J, Santos F, Heine-Suner D, Martinez-Glez V, Garcia-Minaur S, Palomo R, Delicado A, Pajares IL, Palomares M, Garcia-Guereta L, Valverde E, Hawkins F, Lapunzina P: A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review. BMC Med Genet 2009, 10:48. BioMed Central Full Text
  • [33]Garavelli L, Rosato S, Wischmeijer A, Gelmini C, Esposito A, Mazzanti L, Franchi F, De Crescenzo A, Palumbo O, Carella M, Riccio A: 22q11.2 Distal Deletion Syndrome: Description of a New Case with Truncus Arteriosus Type 2 and Review. Mol Syndromol 2011, 2(1):35-44.
  • [34]Vorstman JA, Jalali GR, Rappaport EF, Hacker AM, Scott C, Emanuel BS: MLPA: a rapid, reliable, and sensitive method for detection and analysis of abnormalities of 22q. Human Mutat 2006, 27(8):814-821.
  • [35]Weksberg R, Hughes S, Moldovan L, Bassett AS, Chow EW, Squire JA: A method for accurate detection of genomic microdeletions using real-time quantitative PCR. BMC Genomics 2005, 6:180. BioMed Central Full Text
  • [36]Mantripragada KK, Tapia-Paez I, Blennow E, Nilsson P, Wedell A, Dumanski JP: DNA copy-number analysis of the 22q11 deletion-syndrome region using array-CGH with genomic and PCR-based targets. Int J Mol Med 2004, 13(2):273-279.
  • [37]Miller KA: FISH Diagnosis of 22q11.2 Deletion Syndrome. Newborn Infant Nurs Rev 2008, 8(1):e11-e19.
  • [38]Jalali GR, Vorstman JA, Errami A, Vijzelaar R, Biegel J, Shaikh T, Emanuel BS: Detailed analysis of 22q11.2 with a high density MLPA probe set. Hum Mutat 2008, 29(3):433-440.
  • [39]Bittel DC, Yu S, Newkirk H, Kibiryeva N, Holt A 3rd, Butler MG, Cooley LD: Refining the 22q11.2 deletion breakpoints in DiGeorge syndrome by aCGH. Cytogen Genome Res 2009, 124(2):113-120.
  • [40]Coffa J, van de Wiel MA, Diosdado B, Carvalho B, Schouten J, Meijer GA: MLPAnalyzer: data analysis tool for reliable automated normalization of MLPA fragment data. Cell Oncol 2008, 30(4):323-335.
  • [41]Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G: Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002, 30(12):e57.
  • [42]Frigerio M, Passeri E, de Filippis T, Rusconi D, Valaperta R, Carminati M, Donnangelo A, Costa E, Persani L, Finelli P, Corbetta S: SNPs and real-time quantitative PCR method for constitutional allelic copy number determination, the VPREB1 marker case. BMC Med Genet 2011, 12:61. BioMed Central Full Text
  • [43]Schwab CJ, Jones LR, Morrison H, Ryan SL, Yigittop H, Schouten JP, Harrison CJ: Evaluation of multiplex ligation-dependent probe amplification as a method for the detection of copy number abnormalities in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2010, 49(12):1104-1113.
  • [44]Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, et al.: High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 2011, 83(22):8604-8610.
  • [45]Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR: Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 2012, 84(2):1003-1011.
  • [46]Wechsler D: Wechsler intelligence scale for children–Fourth Edition (WISC-IV). The Psychological Corporation, San Antonio, TX; 2003.
  • [47]Swanson J: SNAP-IV Scale. University of California Child Development Center, Irvine, Calif; 1994.
  • [48]Wechsler D: Wechsler abbreviated scale of intelligence. Psychological Corporation, San Antonio, TX; 1999.
  • [49]Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah YC, Rosenblatt HM, Bradley A, Baldini A: Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999, 401(6751):379-383.
  • [50]Gong W, Gottlieb S, Collins J, Blescia A, Dietz H, Goldmuntz E, McDonald-McGinn DM, Zackai EH, Emanuel BS, Driscoll DA, Budarf ML: Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet 2001, 38(12):E45.
  • [51]Conti E, Grifone N, Sarkozy A, Tandoi C, Marino B, Digilio MC, Mingarelli R, Pizzuti A, Dallapiccola B: DiGeorge subtypes of nonsyndromic conotruncal defects: evidence against a major role of TBX1 gene. Eur J Hum Genet 2003, 11(4):349-351.
  • [52]Ambros V: microRNAs: tiny regulators with great potential. Cell 2001, 107(7):823-826.
  • [53]Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature 2004, 432(7014):231-235.
  • [54]Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R: The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432(7014):235-240.
  • [55]Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN: Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006, 125(5):887-901.
  • [56]Lai EC: microRNAs: runts of the genome assert themselves. Current Biol 2003, 13(23):R925-R936.
  • [57]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425(6956):415-419.
  • [58]Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004, 18(24):3016-3027.
  • [59]Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R: DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 2007, 39(3):380-385.
  • [60]Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, Reinhardt F, Liao R, Krieger M, Jaenisch R, Lodish HF, Blelloch R: Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 2009, 105(6):585-594.
  • [61]Huang ZP, Chen JF, Regan JN, Maguire CT, Tang RH, Dong XR, Majesky MW, Wang DZ: Loss of microRNAs in neural crest leads to cardiovascular syndromes resembling human congenital heart defects. Arterioscler Thromb Vasc Biol 2010, 30(12):2575-2586.
  • [62]de la Morena MT, Eitson JL, Dozmorov IM, Belkaya S, Hoover AR, Anguiano E, Pascual MV, van Oers NS: Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome. Clin Immunol 2013, 147(1):11-22.
  文献评价指标  
  下载次数:40次 浏览次数:10次