期刊论文详细信息
BMC Neuroscience
Glutaminyl cyclase-mediated toxicity of pyroglutamate-beta amyloid induces striatal neurodegeneration
Stephan von Hörsten3  Hans-Ulrich Demuth2  Stephan Schilling2  Sigrid Graubner1  Reinhard Sedlmeier1  Holger Cynis2  Christoph Bäuscher1  Fabio Canneva3  Wolfgang Jagla1  Anca Alexandru1  Stephanie Kohlmann1  Andreas Becker1 
[1] Ingenium Pharmaceuticals GmbH, 82152 Martinsried, Germany;Probiodrug AG, Biocenter, Weinbergweg 22, 06120 Halle (Saale), Germany;Department of Experimental Therapy, Friedrich-Alexander-University Erlangen-Nürnberg, Palmsanlage 5, 91054 Erlangen, Germany
关键词: Striatum;    Neuroinflammation;    Neurodegeneration;    TBA;    Alzheimer’s disease;    Glutaminyl cyclase;    Pyroglutamate Aβ;    ETNA;   
Others  :  1140041
DOI  :  10.1186/1471-2202-14-108
 received in 2012-10-21, accepted in 2013-09-18,  发布年份 2013
PDF
【 摘 要 】

Background

Posttranslational modifications of beta amyloid (Aβ) have been shown to affect its biophysical and neurophysiological properties. One of these modifications is N-terminal pyroglutamate (pE) formation. Enzymatic glutaminyl cyclase (QC) activity catalyzes cyclization of truncated Aβ(3-x), generating pE3-Aβ. Compared to unmodified Aβ, pE3-Aβ is more hydrophobic and neurotoxic. In addition, it accelerates aggregation of other Aβ species. To directly investigate pE3-Aβ formation and toxicity in vivo, transgenic (tg) ETNA (E at the truncated N-terminus of Aβ) mice expressing truncated human Aβ(3–42) were generated and comprehensively characterized. To further investigate the role of QC in pE3-Aβ formation in vivo, ETNA mice were intercrossed with tg mice overexpressing human QC (hQC) to generate double tg ETNA-hQC mice.

Results

Expression of truncated Aβ(3–42) was detected mainly in the lateral striatum of ETNA mice, leading to progressive accumulation of pE3-Aβ. This ultimately resulted in astrocytosis, loss of DARPP-32 immunoreactivity, and neuronal loss at the sites of pE3-Aβ formation. Neuropathology in ETNA mice was associated with behavioral alterations. In particular, hyperactivity and impaired acoustic sensorimotor gating were detected. Double tg ETNA-hQC mice showed similar Aβ levels and expression sites, while pE3-Aβ were significantly increased, entailing increased astrocytosis and neuronal loss.

Conclusions

ETNA and ETNA-hQC mice represent novel mouse models for QC-mediated toxicity of truncated and pE-modified Aβ. Due to their significant striatal neurodegeneration these mice can also be used for analysis of striatal regulation of basal locomotor activity and sensorimotor gating, and possibly for DARPP-32-dependent neurophysiology and neuropathology. The spatio-temporal correlation of pE3-Aβ and neuropathology strongly argues for an important role of this Aβ species in neurodegenerative processes in these models.

【 授权许可】

   
2013 Becker et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324064746185.pdf 2299KB PDF download
Figure 8. 148KB Image download
Figure 7. 71KB Image download
Figure 6. 58KB Image download
Figure 5. 144KB Image download
Figure 4. 98KB Image download
Figure 3. 101KB Image download
Figure 2. 75KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Schilling S, Manhart S, Hoffmann T, Ludwig HH, Wasternack C, Demuth HU: Substrate specificity of glutaminyl cyclases from plants and animals. Biol Chem 2003, 384(12):1583-92.
  • [2]Schilling S, Hoffmann T, Manhart S, Hoffmann M, Demuth HU: Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. FEBS Lett 2004, 563(1–3):191-6.
  • [3]Seifert F, Schulz K, Koch B, Manhart S, Demuth HU, Schilling S: Glutaminyl cyclases display significant catalytic proficiency for glutamyl substrates. Biochemistry 2009, 48(50):11831-3.
  • [4]Saido TC: Alzheimer’s disease as proteolytic disorders: anabolism and catabolism of beta-amyloid. Neurobiol Aging 1998, 19(1 Suppl):S69-75.
  • [5]Tekirian TL, Yang AY, Glabe C, Geddes JW: Toxicity of pyroglutaminated amyloid beta-peptides 3(pE)-40 and −42 is similar to that of A beta1-40 and −42. J Neurochem 1999, 73(4):1584-9.
  • [6]Saido TC: Involvement of polyglutamine endolysis followed by pyroglutamate formation in the pathogenesis of triplet repeat/polyglutamine-expansion diseases. Med Hypotheses 2000, 54(3):427-9.
  • [7]Vidal R, Frangione B, Rostagno A, Mead S, Révész T, Plant G, Ghiso J: A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 1999, 399(6738):776-81.
  • [8]Ghiso JA, Holton J, Miravalle L, Calero M, Lashley T, Vidal R, Houlden H, Wood N, Neubert TA, Rostagno A, Plant G, Revesz T, Frangione B: Systemic amyloid deposits in familial British dementia. J Biol Chem 2001, 276(47):43909-14.
  • [9]Schlenzig D, Manhart S, Cinar Y, Kleinschmidt M, Hause G, Willbold D, Funke SA, Schilling S, Demuth HU: Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry 2009, 48(29):7072-8.
  • [10]Schlenzig D, Rönicke R, Cynis H, Ludwig HH, Scheel E, Reymann K, Saido T, Hause G, Schilling S, Demuth HU: N-Terminal pyroglutamate formation of Aβ38 and Aβ40 enforces oligomer formation and potency to disrupt Hippocampal long-term Potentiation. J Neurochem 2012, 121(5):774-84.
  • [11]Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S: Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron 1995, 14(2):457-66.
  • [12]Selkoe DJ: Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001, 81(2):741-66.
  • [13]Zhang H, Ma Q, Zhang YW, Xu H: Proteolytic processing of Alzheimer’s β-amyloid precursor protein. J Neurochem 2012, 120(Suppl 1):9-21.
  • [14]Cynis H, Rahfeld JU, Stephan A, Kehlen A, Koch B, Wermann M, Demuth HU, Schilling S: Isolation of an isoenzyme of human glutaminyl cyclase: retention in the Golgi complex suggests involvement in the protein maturation machinery. J Mol Biol 2008, 379(5):966-80.
  • [15]He W, Barrow CJ: The A beta 3-pyroglutamyl and 11-pyroglutamyl peptides found in senile plaque have greater beta-sheet forming and aggregation propensities in vitro than full-length A beta. Biochemistry 1999, 38(33):10871-7.
  • [16]D’Arrigo C, Tabaton M, Perico A: N-terminal truncated pyroglutamyl beta amyloid peptide Abetapy3- 42 shows faster aggregation kinetics than the full-length Abeta1-42. Biopolymers 2009, 91(10):861-73.
  • [17]Alexandru A, Jagla W, Graubner S, Becker A, Bäuscher C, Kohlmann S, Sedlmeier R, Raber KA, Cynis H, Rönicke R, Reymann KG, Petrasch-Parwez E, Hartlage-Rübsamen M, Waniek A, Rossner S, Schilling S, Osmand AP, Demuth HU, von Hörsten S: Selective hippocampal neurodegeneration in transgenic mice expressing small amounts of truncated Aβ is induced by pyroglutamate-Aβ formation. J Neurosci 2011, 31(36):12790-801.
  • [18]Wirths O, Breyhan H, Cynis H, Schilling S, Demuth HU, Bayer TA: Intraneuronal pyroglutamate-Abeta 3–42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol 2009, 118(4):487-96.
  • [19]Wittnam JL, Portelius E, Zetterberg H, Gustavsson MK, Schilling S, Koch B, Demuth HU, Blennow K, Wirths O, Bayer TA: Pyroglutamate amyloid β (Aβ) aggravates behavioral deficits in transgenic amyloid mouse model for Alzheimer disease. J Biol Chem 2012, 287(11):8154-62.
  • [20]Lüthi A, Van der Putten H, Botteri FM, Mansuy IM, Meins M, Frey U, Sansig G, Portet C, Schmutz M, Schröder M, Nitsch C, Laurent JP, Monard D: Endogenous serine protease inhibitor modulates epileptic activity and Hippocampal long-term Potentiation. J Neurosci 1997, 17(12):4688-99.
  • [21]Friedman TC, Loh YP, Cawley NX, Birch NP, Huang SS, Jackson IM, Nillni EA: Processing of prothyrotropin-releasing hormone (Pro-TRH) by bovine intermediate lobe secretory vesicle membrane PC1 and PC2 enzymes. Endocrinology 1995, 136(10):4462-72.
  • [22]Cynis H, Schilling S, Bodnár M, Hoffmann T, Heiser U, Saido TC, Demuth HU: Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim Biophys Acta 2006, 1764(10):1618-25.
  • [23]Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA: An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 1995, 23:1087-1088.
  • [24]Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, Martin JE: Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 1997, 8(10):711-3.
  • [25]Karl T, Pabst R, von Hörsten S: Behavioral phenotyping of mice in pharmacological and toxicological research. Exp Toxicol Pathol 2003, 55(1):69-83.
  • [26]Paxinos G, Franklin KB: The mouse brain in stereotaxic coordinates. San Diego: Elsevier Academic; 2008.
  • [27]Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 2006, 7(10):R100. BioMed Central Full Text
  • [28]Nillni EA, Sevarino KA: The biology of pro-thyrotropin-releasing hormone-derived peptides. Endocr Rev 1999, 20(5):599-648.
  • [29]Spongr VP, Flood DG, Frisina RD, Salvi RJ: Quantitative measures of hair cell loss in CBA and C57BL/6 mice throughout their life spans. J Acoust Soc Am 1997, 101(6):3546-53.
  • [30]Keithley EM, Canto C, Zheng QY, Fischel-Ghodsian N, Johnson KR: Age-related hearing loss and the ahl locus in mice. Hear Res 2004, 188(1–2):21-8.
  • [31]Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, Walter J, Pape HC, König S, Roeber S, Jessen F, Klockgether T, Korte M, Heneka MT: Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 2011, 71(5):833-44.
  • [32]Nussbaum JM, Schilling S, Cynis H, Silva A, Swanson E, Wangsanut T, Tayler K, Wiltgen B, Hatami A, Rönicke R, Reymann K, Hutter-Paier B, Alexandru A, Jagla W, Graubner S, Glabe CG, Demuth HU, Bloom GS: Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature 2012, 485(7400):651-5.
  • [33]Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P: DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 2004, 44:269-96.
  • [34]Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O: Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 2010, 33(1):e29-40. 196
  • [35]Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E, Mucke L: Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 1995, 270(47):28257-67.
  • [36]Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L: High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 2000, 20(11):4050-8.
  • [37]McGowan E, Eriksen J, Hutton M: A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet 2006, 22(5):281-9.
  • [38]Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR: Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington’s disease. J Neurol Neurosurg Psychiatry 1995, 58(2):192-200.
  • [39]Svenningsson P, Tzavara ET, Carruthers R, Rachleff I, Wattler S, Nehls M, McKinzie DL, Fienberg AA, Nomikos GG, Greengard P: Diverse psychotomimetics act through a common signaling pathway. Science 2003, 302(5649):1412-5.
  • [40]Jellinger KA: Neurodegenerative Erkrankungen (ZNS) - Eine aktuelle Übersicht. J Neurol Neurochir Psychiatr 2005, 6(1):9-18.
  • [41]Miller BR, Walker AG, Fowler SC, von Hörsten S, Riess O, Johnson MA, Rebec GV: Dysregulation of coordinated neuronal firing patterns in striatum of freely behaving transgenic rats that model Huntington’s disease. Neurobiol Dis 2010, 37(1):106-13.
  • [42]Zuccato C, Valenza M, Cattaneo E: Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 2010, 90(3):905-81.
  • [43]Bateup HS, Santini E, Shen W, Birnbaum S, Valjent E, Surmeier DJ, Fisone G, Nestler EJ, Greengard P: Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci USA 2010, 107(33):14845-50.
  文献评价指标  
  下载次数:67次 浏览次数:18次