期刊论文详细信息
BMC Genomics
Gene expression profile analysis of Manila clam (Ruditapes philippinarum) hemocytes after a Vibrio alginolyticus challenge using an immune-enriched oligo-microarray
Beatriz Novoa1  Luca Bargelloni2  Antonio Figueras1  Massimiliano Babbucci2  Alejandro Romero1  Pablo Balseiro1  Massimo Milan2  Rebeca Moreira1 
[1] Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
关键词: Immune response;    Blast2GO;    Gene ontology;    Oligo-microarray;    Hemocytes;    Vibrio alginolyticus;    Ruditapes philippinarum;   
Others  :  1217530
DOI  :  10.1186/1471-2164-15-267
 received in 2013-03-13, accepted in 2014-03-31,  发布年份 2014
PDF
【 摘 要 】

Background

The Manila clam (Ruditapes philippinarum) is a cultured bivalve with worldwide commercial importance, and diseases cause high economic losses. For this reason, interest in the immune genes in this species has recently increased. The present work describes the construction of the first R. philippinarum microarray containing immune-related hemocyte sequences and its application to study the gene transcription profiles of hemocytes from clams infected with V. alginolyticus through a time course.

Results

The complete set of sequences from R. philippinarum available in the public databases and the hemocyte sequences enriched in immune transcripts were assembled successfully. A total of 12,156 annotated sequences were used to construct the 8 ×15 k oligo-microarray. The microarray experiments yielded a total of 579 differentially expressed transcripts. Using the gene expression results, the associated Gene Ontology terms and the enrichment analysis, we found different response mechanisms throughout the experiment. Genes related to signaling, transcription and apoptosis, such as IL-17D, NF-κB or calmodulin, were typically expressed as early as 3 hours post-challenge (hpc), while characteristic immune genes, such as PGRPs, FREPs and defense proteins appeared later at 8 hpc. This immune-triggering response could have affected a high number of processes that seemed to be activated 24 hpc to overcome the Vibrio challenge, including the expression of many cytoskeleton molecules, which is indicative of the active movement of hemocytes. In fact functional studies showed an increment in apoptosis, necrosis or cell migration after the infection. Finally, 72 hpc, activity returned to normal levels, and more than 50% of the genes were downregulated in a negative feedback of all of the previously active processes.

Conclusions

Using a new version of the R. philippinarum oligo-microarray, a putative timing for the response against a Vibrio infection was established. The key point to overcome the challenge seemed to be 8 hours after the challenge, when we detected immune functions that could lead to the destruction of the pathogen and the activation of a wide variety of processes related to homeostasis and defense. These results highlight the importance of a fast response in bivalves and the effectiveness of their innate immune system.

【 授权许可】

   
2014 Moreira et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150707024731553.pdf 1816KB PDF download
Figure 6. 64KB Image download
Figure 5. 74KB Image download
Figure 4. 120KB Image download
Figure 3. 74KB Image download
Figure 2. 63KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Gestal C, Roch P, Renault T, Pallavicini A, Paillard C, Novoa B, Oubella R, Venier P, Figueras A: Study of diseases and the immune system of bivalves using molecular biology and genomics. Rev Fish Sci 2008, 16:131-154.
  • [2]Paillard C, Leroux F, Borrego JJ: Bacterial disease in marine bivalves, Review of recent studies. Trends and evolution. Aquat Living Resour 2004, 17:477-498.
  • [3]Villalba A, Reece KS, Ordás MC, Casas SM, Figueras A: Perkinsosis in molluscs: A review. Aquat Living Resour 2004, 17:411-432.
  • [4]Waki T, Shimokawa J, Watanabe S, Yoshinaga T, Ogawa K: Experimental challenges of wild Manila clams with Perkinsus species isolated from naturally infected wild Manila clams. J Invertebr Pathol 2012, 111:50-55.
  • [5]Allam B, Paillard C, Auffret M: Alterations in hemolymph and extrapallial fluid parameters in the Manila clam, Ruditapes philippinarum, challenged with the pathogen Vibrio tapetis. J Invertebr Pathol 2000, 76:63-69.
  • [6]Gómez-León J, Villamil L, Lemos ML, Novoa B, Figueras A: Isolation of V. alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Appl Environ Microb 2005, 71:98-104.
  • [7]Canesi L, Gallo G, Gavioli M, Pruzzo C: Bacteria–hemocyte interactions and phagocytosis in bivalves. Microsc Res Technol 2002, 57:469-476.
  • [8]Olafsen JA: Role of lectins (C-reactive protein) in defense of marine bivalves against bacteria. Adv Exp Med Biol 1995, 371A:343-348.
  • [9]Ordás MC, Novoa B, Figueras A: Modulation of the chemiluminescence response of Mediterranean mussel (Mytilus galloprovincialis) haemocytes. Fish Shellfish Immunol 2000, 10:611-622.
  • [10]Ordás MC, Ordás A, Beloso C, Figueras A: Immune parameters in carpet shell clams naturally infected with Perkinsus atlanticus. Fish Shellfish Immunol 2000, 10:597-609.
  • [11]Tafalla C, Gómez-León J, Novoa B, Figueras A: Nitric oxide production by carpet shell clam (Ruditapes decussatus) hemocytes. Dev Comp Immunol 2003, 27:197-205.
  • [12]Bayne CJ, Sminia T, Van der Knaap WPW: Immunological Memory: Status of Molluscan Studies. In Phylogeny of Immunological Memory. Edited by Manning MJ. Amsterdam: Elsevier; 1980:57-64. [Developments in immunology, Volume 10]
  • [13]Gueguen Y, Cadoret JP, Flament D, Barreau-Roumiguiere C, Girardot AL, Garnier J, Hoareau A, Bachere E, Escoubas JM: Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene 2003, 303:139-145.
  • [14]Costa MM, Novoa B, Figueras A: Influence of β-glucans on the immune responses of carpet shell clam (Ruditapes decussatus) and Mediterranean mussel (Mytilus galloprovincialis). Fish Shellfish Immunol 2008, 24:498-505.
  • [15]Costa MM, Prado-Alvarez M, Gestal C, Roch P, Li H, Novoa B, Figueras A: Functional and molecular immune response of Mediterranean mussel (Mytilus galloprovincialis) hemocytes against pathogen associated molecular patterns and bacteria. Fish Shellfish Immunol 2009, 26:515-523.
  • [16]Li H, Venier P, Prado-Alvarez M, Gestal C, Toubiana M, Quartesan R, Borghesan F, Novoa B, Figueras A, Roch P: Expression of Mytilus immune genes in response to experimental challenges varied according to the site of collection. Fish Shellfish Immunol 2010, 28:640-648.
  • [17]Araya MT, Markham F, Mateo DR, McKenna P, Johnson GR, Berthe FCJ, Siah A: Identification and expression of immune-related genes in hemocytes of soft-shell clams, Mya arenaria, challenged with Vibrio splendidus. Fish Shellfish Immunol 2010, 29:557-564.
  • [18]Moreira R, Balseiro P, Romero A, Dios S, Posada D, Novoa B, Figueras A: Gene expression analysis of clams Ruditapes philippinarum and Ruditapes decussatus following bacterial infection yields molecular insights into pathogen resistance and immunity. Dev Comp Immunol 2012, 36:140-149.
  • [19]Romero A, Dios S, Poisa-Beiro L, Costa MM, Posada D, Figueras A, Novoa B: Individual sequence variability and functional activities of fibrinogen-related proteins (FREPs) in the Mediterranean mussel (Mytilus galloprovincialis) suggest ancient and complex immune recognition models in invertebrates. Dev Comp Immunol 2011, 35:334-344.
  • [20]Milan M, Coppe A, Reinhardt R, Cancela LM, Leite RB, Saavedra C, Ciofi C, Chelazzi G, Patarnello T, Bortoluzzi S, Bargelloni L: Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: genomic tools for environmental monitoring. BMC Genomics 2011, 12:234. BioMed Central Full Text
  • [21]Moreira R, Balseiro P, Planas JV, Fuste B, Beltran S, Novoa B, Figueras A: Transcriptomics of in vitro immune-stimulated hemocytes from the Manila clam Ruditapes philippinarum using high-throughput sequencing. PLoS One 2012, 7:e35009.
  • [22]Ghiselli F, Milani L, Chang PL, Hedgecock D, Davis JP, Nuzhdin SV, Passamonti M: De Novo Assembly of the Manila Clam Ruditapes philippinarum Transcriptome Provides New Insights into Expression Bias, Mitochondrial Doubly Uniparental Inheritance and Sex Determination. Mol Biol Evol 2012, 29:771-786.
  • [23]Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS: Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 2001, 19:342-347.
  • [24]Iwahashi H, Kitagawa E, Suzuki Y, Ueda Y, Ishizawa YH, Nobumasa H, Kuboki Y, Hosoda H, Iwahashi Y: Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray. BMC Genomics 2007, 8:95. BioMed Central Full Text
  • [25]Wang YZ, Han YS, Ma YS, Jiang JJ, Chen ZX, Wang YC, Che W, Zhang F, Xia Q, Wang XF: Differential gene expression of Wnt signaling pathway in benign, premalignant, and malignant human breast epithelial cells. Tumour Biol 2012, 33:2317-2327.
  • [26]Dheilly NM, Lelong C, Huvet A, Favrel P: Development of a Pacific oyster (Crassostrea gigas) 31,918-feature microarray: identification of reference genes and tissue-enriched expression patterns. BMC Genomics 2011, 12:468. BioMed Central Full Text
  • [27]Wang S, Peatman E, Liu H, Bushek D, Ford SE, Kucuktas H, Quilang J, Li P, Wallace R, Wang Y, Guo X, Liu Z: Microarray analysis of gene expression in eastern oyster (Crassostrea virginica) reveals a novel combination of antimicrobial and oxidative stress host responses after dermo (Perkinsus marinus) challenge. Fish Shellfish Immunol 2010, 29:921-929.
  • [28]Xu W, Faisal M: Development of a cDNA microarray of zebra mussel (Dreissena polymorpha) foot and its use in understanding the early stage of underwater adhesion. Gene 2009, 436:71-80.
  • [29]Allam B, Tanguy A, Jeffroy F, Le Bris C, Espinosa EP, Paillard C: Transcriptional changes in Manila clam (Ruditapes philippinarum) in response to brown ring disease. Fish Shellfish Immunol 2013, 34:1636.
  • [30]Morey JS, Ryan JC, Van Dolah FM: Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online 2006, 8:175-193.
  • [31]Dunkelberger JR, Song WC: Complement and its role in innate and adaptive immune responses. Cell Res 2010, 20:34-50.
  • [32]Prado-Alvarez M, Rotllant J, Gestal C, Novoa B, Figueras A: Characterization of a C3 and a factor B-like in the carpet-shell clam, Ruditapes decussatus. Fish Shellfish Immunol 2009, 26:305-315.
  • [33]Starnes T, Broxmeyer HE, Robertson MJ, Hromas R: Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. J Immunol 2002, 169:642-646.
  • [34]Costa MM, Pereiro P, Wang T, Secombes CJ, Figueras A, Novoa B: Characterization and gene expression analysis of the two main Th17 cytokines (IL-17A/F and IL-22) in turbot, Scophthalmus maximus. Dev Comp Immunol 2012, 38:505-516.
  • [35]Roberts S, Gueguen Y, de Lorgeril J, Goetz F: Rapid accumulation of an interleukin 17 homolog transcript in Crassostrea gigas hemocytes following bacterial exposure. Dev Comp Immunol 2008, 32:1099-1104.
  • [36]Zhou Y, Koli K, Hagood JS, Miao M, Mavalli M, Rifkin DB, Murphy-Ullrich JE: Latent transforming growth factor-beta-binding protein-4 regulates transforming growth factor-beta1 bioavailability for activation by fibrogenic lung fibroblasts in response to bleomycin. Am J Pathol 2009, 174:21-33.
  • [37]Kantola AK, Keski-Oja J, Koli K: Fibronectin and heparin binding domains of latent TGF-beta binding protein (LTBP)-4 mediate matrix targeting and cell adhesion. Exp Cell Res 2008, 314:2488-2500.
  • [38]Qiu L, Song L, Yu Y, Zhao J, Wang L, Zhang Q: Identification and expression of TRAF6 (TNF receptor-associated factor 6) gene in Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 2009, 26:359-367.
  • [39]Walker MP, Zhang M, Le TP, Wu P, Lainé M, Greene GL: RAC3 is a pro-migratory co-activator of ERα. Oncogene 2011, 30:1984-1994.
  • [40]Can G, Akpinar B, Baran Y, Zhivotovsky B, Olsson M: 5-Fluorouracil signaling through a calcium-calmodulin-dependent pathway is required for p53 activation and apoptosis in colon carcinoma cells. Oncogene 2013, 32:4529-4538.
  • [41]Gestal C, Pallavicini A, Venier P, Novoa B, Figueras A: MgC1q, a novel C1q-domain-containing protein involved in the immune response of Mytilus galloprovincialis. Dev Comp Immunol 2010, 34:926-934.
  • [42]Gray C, Loynes CA, Whyte MK, Crossman DC, Renshaw SA, Chico TJ: Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thromb Haemost 2011, 105:811-819.
  • [43]Machado C, Andrew DJ: D-Titin:a giant protein with dual roles in chromosomes and muscles. J Cell Biol 2000, 151:639-652.
  • [44]Liu HL, Liu SF, Ge YJ, Liu J, Wang XY, Xie LP, Zhang RQ, Wang Z: Identification and characterization of a biomineralization related gene PFMG1 highly expressed in the mantle of Pinctada fucata. Biochemistry 2007, 46:844-851.
  • [45]Ni M, MacFarlane AW IV, Toft M, Lowell CA, Campbell KS, Hamerman JA: B-cell adaptor for PI3K (BCAP) negatively regulates Toll-like receptor signaling through activation of PI3K. Proc Natl Acad Sci U S A 2012, 109:267-272.
  • [46]Maruoka M, Suzuki J, Kawata S, Yoshida K, Hirao N, Sato S, Goff SP, Takeya T, Tani K, Shishido T: Identification of B cell adaptor for PI3-kinase (BCAP) as an Abl interactor 1-regulated substrate of Abl kinases. FEBS Lett 2005, 579:2986-2990.
  • [47]Laurenzana EM, Chen T, Kannuswamy M, Sell BE, Strom SC, Li Y, Omiecinski CJ: The Orphan Nuclear Receptor, DAX-1, Functions as a Potent Co-repressor of the Constitutive Androstane Receptor (CAR, NR1I3). Mol Pharmacol 2012, 82:918-928.
  • [48]Wang N, Lee YH, Lee J: Recombinant perlucin nucleates the growth of calcium carbonate crystals: molecular cloning and characterization of perlucin from disk abalone, Haliotis discus discus. Comp Biochem Physiol B Biochem Mol Biol 2008, 149:354-361.
  • [49]Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C: Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 2003, 304:505-512.
  • [50]Shelly M, Mosesson Y, Citri A, Lavi S, Zwang Y, Melamed-Book N, Aroeti B, Yarden Y: Polar expression of ErbB-2/HER2 in epithelia. Bimodal regulation by Lin-7. Dev Cell 2003, 5:475-486.
  • [51]Irie M, Hata Y, Deguchi M, Ide N, Hirao K, Yao I, Nishioka H, Takai Y: Isolation and characterization of mammalian homologues of Caenorhabditis elegans lin-7: localization at cell-cell junctions. Oncogene 1999, 18:2811-2817.
  • [52]Oettgen P, Kas K, Dube A, Gu X, Grall F, Thamrongsak U, Akbarali Y, Finger E, Boltax J, Endress G, Munger K, Kunsch C, Libermann TA: Characterization of ESE-2, a novel ESE-1-related Ets transcription factor that is restricted to glandular epithelium and differentiated keratinocytes. J Biol Chem 1999, 274:29439-29452.
  • [53]Leotoing L, Chereau F, Baron S, Hube F, Valencia HJ, Bordereaux D, Demmers JA, Strouboulis J, Baud V: A20-binding inhibitor of nuclear factor-kappaB (NF-kappaB)-2 (ABIN-2) is an activator of inhibitor of NF-kappaB (IkappaB) kinase alpha (IKKalpha)-mediated NF-kappaB transcriptional activity. J Biol Chem 2011, 286:32277-32288.
  • [54]Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G: The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol 2012, 22:557-566.
  • [55]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [56]Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A: NCBI GEO:archive for functional genomics data sets–10 years on. Nucleic Acids Res 2011, 39(Database issue):D1005-D1010.
  • [57]Allam B, Paillard C, Ford SE: Pathogenicity of Vibrio tapetis, the etiological agent of brown ring disease in clams. Dis Aquat Organ 2002, 48:221-231.
  • [58]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO, a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21:3674-3676.
  • [59]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology, tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
  • [60]Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386.
  • [61]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29:e45.
  文献评价指标  
  下载次数:31次 浏览次数:6次