期刊论文详细信息
BMC Genomics
Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses
Qing-Yao Shu3  Mumtaz A Saand1  Kaleem Ullah Kakar2  Zarqa Nawaz3 
[1] Department of Botany, Shah Abdul Latif University, Khairpur mir’s, Sindh, Pakistan;Institute of Biotechnology, Zhejiang University, Hangzhou, China;Institute of Crop Sciences, Zhejiang University, Hangzhou 310029, China
关键词: Resistance;    Phylogenetic analysis;    Bioinformatics;    Biotic and abiotic stress;    Rice;    CNGCs;   
Others  :  1136375
DOI  :  10.1186/1471-2164-15-853
 received in 2014-04-10, accepted in 2014-09-24,  发布年份 2014
PDF
【 摘 要 】

Background

Cyclic nucleotide-gated channels (CNGCs) are Ca2+-permeable cation transport channels, which are present in both animal and plant systems. They have been implicated in the uptake of both essential and toxic cations, Ca2+ signaling, pathogen defense, and thermotolerance in plants. To date there has not been a genome-wide overview of the CNGC gene family in any economically important crop, including rice (Oryza sativa L.). There is an urgent need for a thorough genome-wide analysis and experimental verification of this gene family in rice.

Results

In this study, a total of 16 full length rice CNGC genes distributed on chromosomes 1–6, 9 and 12, were identified by employing comprehensive bioinformatics analyses. Based on phylogeny, the family of OsCNGCs was classified into four major groups (I-IV) and two sub-groups (IV-A and IV- B). Likewise, the CNGCs from all plant lineages clustered into four groups (I-IV), where group II was conserved in all land plants. Gene duplication analysis revealed that both chromosomal segmentation (OsCNGC1 and 2, 10 and 11, 15 and 16) and tandem duplications (OsCNGC1 and 2) significantly contributed to the expansion of this gene family. Motif composition and protein sequence analysis revealed that the CNGC specific domain “cyclic nucleotide-binding domain (CNBD)” comprises a “phosphate binding cassette” (PBC) and a “hinge” region that is highly conserved among the OsCNGCs. In addition, OsCNGC proteins also contain various other functional motifs and post-translational modification sites. We successively built a stringent motif: (LI-X(2)-[GS]-X-[FV]-X-G-[1]-ELL-X-W-X(12,22)-SA-X(2)-T-X(7)-[EQ]-AF-X-L) that recognizes the rice CNGCs specifically. Prediction of cis-acting regulatory elements in 5′ upstream sequences and expression analyses through quantitative qPCR demonstrated that OsCNGC genes were highly responsive to multiple stimuli including hormonal (abscisic acid, indoleacetic acid, kinetin and ethylene), biotic (Pseudomonas fuscovaginae and Xanthomonas oryzae pv. oryzae) and abiotic (cold) stress.

Conclusions

There are 16 CNGC genes in rice, which were probably expanded through chromosomal segmentation and tandem duplications and comprise a PBC and a “hinge” region in the CNBD domain, featured by a stringent motif. The various cis-acting regulatory elements in the upstream sequences may be responsible for responding to multiple stimuli, including hormonal, biotic and abiotic stresses.

【 授权许可】

   
2014 Nawaz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150312090025907.pdf 3686KB PDF download
Figure 6. 78KB Image download
Figure 5. 167KB Image download
Figure 4. 95KB Image download
Figure 3. 127KB Image download
Figure 2. 96KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Jammes F, Hu HC, Villiers F, Bouten R, Kwak JM: Calcium‒permeable channels in plant cells. FEBS J 2011, 278:4262-4276.
  • [2]Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA: Ca2+ Signaling by Plant Arabidopsis Thaliana Pep Peptides Depends on AtPepR1, a Receptor With Guanylyl Cyclase Activity, and cGMP-Activated Ca2+ Channels. Proc. Natl. Acad. Sci. U.S.A 2010, 107:21193-21198.
  • [3]Frietsch S, Wang Y-F, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF: A Cyclic Nucleotide-Gated Channel is Essential for Polarized tip Growth of Pollen. Proc. Natl. Acad. Sci. U.S.A 2007, 104:14531-14536.
  • [4]Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE: Differential and Chaotic Calcium Signatures in the Symbiosis Signaling Pathway of Legumes. Proc. Natl. Acad. Sci. U.S.A 2008, 105:9823-9828.
  • [5]Tracy FE, Gilliham M, Dodd AN, Webb AA, Tester M: NaCl‒induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 2008, 31:1063-1073.
  • [6]Harada A, Sakai T, Okada K: Phot1 and phot2 Mediate Blue Light-Induced Transient Increases in Cytosolic Ca2+ Differently in Arabidopsis Leaves Proc. Natl. Acad. Sci. U.S.A. 2003, 100:8583-8588.
  • [7]Dodd AN, Gardner MJ, Hotta CT, Hubbard KE, Dalchau N, Love J, Assie J-M, Robertson FC, Jakobsen MK, Gonçalves J: The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 2007, 318:1789-1792.
  • [8]Talke IN, Blaudez D, Maathuis FJ, Sanders D: CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 2003, 8:286-293.
  • [9]Becchetti A, Gamel K, Torre V: Cyclic Nucleotide–gated Channels Pore Topology Studied through the Accessibility of Reporter Cysteines. J Gen Physiol 1999, 114:377-392.
  • [10]Kaupp UB, Seifert R: Cyclic nucleotide-gated ion channels. Physiol Rev 2002, 82:769.
  • [11]Zelman AK, Dawe A, Gehring C, Berkowitz GA: Evolutionary and Structural Perspectives of Plant Cyclic Nucleotide-Gated Cation Channels. Plant Sci: Front; 2012:3.
  • [12]Yuen CC, Christopher DA: The group IV-A cyclic nucleotide-gated channels, CNGC19 and CNGC20, localize to the vacuole membrane in Arabidopsis thaliana. AoB Plants 2013, 5:plt012.
  • [13]Chin K, Moeder W, Yoshioka K: Biological roles of cyclic-nucleotide-gated ion channels in plants: What we know and don’t know about this 20 member ion channel family. Botany 2009, 87:668-677.
  • [14]Moeder W, Urquhart W, Ung H, Yoshioka K: The role of cyclic nucleotide-gated ion channels in plant immunity. Mol Plant 2011, 4:442-452.
  • [15]Ma W, Berkowitz GA: Ca2+ conduction by plant cyclic nucleotide gated channels and associated signaling components in pathogen defense signal transduction cascades. New Phytol 2011, 190:566-572.
  • [16]Kaplan B, Sherman T, Fromm H: Cyclic nucleotide-gated channels in plants. FEBS Lett 2007, 581:2237-2246.
  • [17]Schuurink RC, Shartzer SF, Fath A, Jones RL: Characterization of a Calmodulin-Binding Transporter from the Plasma Membrane of Barley Aleurone. Leaves. Proc. Natl. Acad. Sci. U.S.A 1998, 95:1944-1949.
  • [18]Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D: Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 2001, 126:1646-1667.
  • [19]Hua B-G, Mercier RW, Zielinski RE, Berkowitz GA: Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 2003, 41:945-954.
  • [20]Köhler C, Neuhaus G: Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Lett 2000, 471:133-136.
  • [21]Arazi T, Sunkar R, Kaplan B, Fromm H: A tobacco plasma membrane calmodulin‒binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 1999, 20:171-182.
  • [22]Cukkemane A, Seifert R, Kaupp UB: Cooperative and uncooperative cyclic-nucleotide-gated ion channels. Trends Biochem Sci 2011, 36:55-64.
  • [23]Young EC, Krougliak N: Distinct structural determinants of efficacy and sensitivity in the ligand-binding domain of cyclic nucleotide-gated channels. J Biol Chem 2004, 279:3553-3562.
  • [24]Balagué C, Lin B, Alcon C, Flottes G, Malmström S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D: HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide–gated channel ion channel family. Plant Cell 2003, 15:365-379.
  • [25]Leng Q, Mercier RW, Hua B-G, Fromm H, Berkowitz GA: Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 2002, 128:400-410.
  • [26]Ramanjaneyulu G, Seshapani P, Naidu B, Rayalu DJ, Raju CP, Kumari JP: Genome wide analysis and identification of genes related to cyclic nucleotide gated channels (CNGC) in Oryza sativa. Bulletin of Pure & Applied Sciences-Botany 2010, 29:83-91.
  • [27]Maathuis FJ: cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 2006, 45:700-711.
  • [28]Rubio F, Flores P, Navarro JM, Martınez V: Effects of Ca2+, K+ and cGMP on Na+ uptake in pepper plants. Plant Sci 2003, 165:1043-1049.
  • [29]Penson SP, Schuurink RC, Fath A, Gubler F, Jacobsen JV, Jones RL: cGMP is required for gibberellic acid-induced gene expression in barley aleurone. Plant Cell 1996, 8:2325-2333.
  • [30]Bowler C, Neuhaus G, Yamagata H, Chua N-H: Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 1994, 77:73-81.
  • [31]Bridges D, Fraser ME, Moorhead GB: Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. BMC Bioinformatics 2005, 6:6. BioMed Central Full Text
  • [32]Ward JM, Mäser P, Schroeder JI: Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 2009, 71:59-82.
  • [33]Zhorov BS, Tikhonov DB: Potassium, sodium, calcium and glutamate‒gated channels: pore architecture and ligand action. J Neurochem 2004, 88:782-799.
  • [34]Zhao Y, Liu W, Xu Y-P, Cao J-Y, Braam J, Cai X-Z: Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species. BMC Plant Biol 2013, 13:70. BioMed Central Full Text
  • [35]Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ: Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol 2001, 125:604-614.
  • [36]Project IRGS: The map-based sequence of the rice genome. Nature 2005, 436:793-800.
  • [37]Vij S, Gupta V, Kumar D, Vydianathan R, Raghuvanshi S, Khurana P, Khurana JP, Tyagi AK: Decoding the rice genome. Bioessays 2006, 28:421-432.
  • [38]Paterson A, Bowers J, Chapman B: Ancient Polyploidization Predating Divergence of the Cereals, and its Consequences for Comparative Genomics. Leaves. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:9903-9908.
  • [39]Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C: The genomes of Oryza sativa: a history of duplications. PLoS Biol 2005, 3:e38.
  • [40]PLACE: A database of plant Cis-acting regulatory DNA elements. http://www.dna.affrc.go.jp/PLACE/signalscan.html webcite
  • [41]Sun J, Xie D-W, Zhao H-W, Zou D-T: Genome-wide identification of the class III aminotransferase gene family in rice and expression analysis under abiotic stress. Genes Genom 2013, 35:1-12.
  • [42]Guruprasad K, Reddy BB, Pandit MW: Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 1990, 4:155-161.
  • [43]Khoury GA, Baliban RC, Floudas CA: Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 2011, 1:1-5. doi:10.1038/srep00090
  • [44]Müller F, Bönigk W, Sesti F, Frings S: Phosphorylation of mammalian olfactory cyclic nucleotide-gated channels increases ligand sensitivity. J Neurobiol 1998, 18:164-173.
  • [45]Gordon SE, Brautigan DL, Zimmerman AL: Protein phosphatases modulate the apparent agonist affinity of the light-regulated ion channel in retinal rods. Neuron 1992, 9:739-748.
  • [46]Jami SK, Clark GB, Ayele BT, Roux SJ, Kirti P: Identification and characterization of annexin gene family in rice. Plant Cell Rep 2012, 31:813-825.
  • [47]Nadolski MJ, Linder ME: Protein lipidation. FEBS J 2007, 274:5202-5210.
  • [48]Resh MD: Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999, 1451:1-16.
  • [49]Batistič O, Sorek N, Schültke S, Yalovsky S, Kudla J: Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell 2008, 20:1346-1362.
  • [50]Benetka W, Mehlmer N, Maurer-Stroh S, Sammer M, Koranda M, Neumüller R, Betschinger J, Knoblich JA, Teige M, Eisenhaber F: Experimental testing of predicted myristoylation targets involved in asymmetric cell division and calcium-dependent signalling. Cell Cycle 2008, 7:3709-3719.
  • [51]O’Callaghan D, Burgoyne R: Role of myristoylation in the intracellular targeting of neuronal calcium sensor (NCS) proteins. Biochem Soc Trans 2003, 31:963-965.
  • [52]Utsumi T, Ohta H, Kayano Y, Sakurai N, Ozoe Y: The N‒terminus of B96Bom, a Bombyx mori G‒protein‒coupled receptor, is N‒myristoylated and translocated across the membrane. FEBS J 2005, 272:472-481.
  • [53]Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé A-C, Gomord V, Faye L: N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 1998, 38:31-48.
  • [54]Meighan SE, Meighan PC, Rich ED, Brown RL, Varnum MD: Cyclic nucleotide-gated channel subunit glycosylation regulates matrix metalloproteinase-dependent changes in channel gating. Biochemistry 2013, 52:8352-8362.
  • [55]Seoighe C, Gehring C: Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 2004, 20:461-464.
  • [56]Yuen CL, Christopher D: The Role of Cyclic Nucleotide-Gated Channels in Cation Nutrition and Abiotic Stress. In Ion Channels and Plant Stress Responses. Edited by Demidchik V, Maathuis F. Berlin Heidelberg: Springer; 2010:137-157.
  • [57]Fischer C, Kugler A, Hoth S, Dietrich P: An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. Plant Cell Physiol 2013, 54:573-584.
  • [58]Rhoads AR, Friedberg F: Sequence motifs for calmodulin recognition. FASEB J 1997, 11:331-340.
  • [59]DiFrancesco D, Tortora P: Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 1991, 351:145-147.
  • [60]Diller T, Madhusudan X, Xuon NH, Taylor SS: Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: crystal structure of the type II beta regulatory subunit. Structure 2001, 9:73-82.
  • [61]Jackson HA, Marshall CR, Accili EA: Evolution and structural diversification of hyperpolarization-activated cyclic nucleotide-gated channel genes. Physiol Genomics 2007, 29:231-245.
  • [62]Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y: The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 2007, 143:1398-1407.
  • [63]Cannon SB, Mitra A, Baumgarten A, Young ND, May G: The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 2004, 4:10. BioMed Central Full Text
  • [64]Chauve C, Doyon J-P, El-Mabrouk N: Gene family evolution by duplication, speciation, and loss. J Comput Biol 2008, 15:1043-1062.
  • [65]Bowers JE, Chapman BA, Rong J, Paterson AH: Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003, 422:433-438.
  • [66]Du H, Wang Y-B, Xie Y, Liang Z, Jiang S-J, Zhang S-S, Huang Y-B, Tang Y-X: Genome-wide identification and evolutionary and expression analyses of MYB-related genes in land plants. DNA Res 2013, 20:437-448.
  • [67]Maruyama S, Suzaki T, Weber AP, Archibald JM, Nozaki H: Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol 2011, 11:105. BioMed Central Full Text
  • [68]He L, Zhao M, Wang Y, Gai J, He C: Phylogeny, structural evolution and functional diversification of the plant PHOSPHATE1 gene family: a focus on Glycine max. BMC Evol Biol 2013, 13:103. BioMed Central Full Text
  • [69]Li W, Liu B, Yu L, Feng D, Wang H, Wang J: Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol Biol 2009, 9:90. BioMed Central Full Text
  • [70]Gomez-Porras JL, Riaño-Pachón DM, Benito B, Haro R, Sklodowski K, Rodríguez-Navarro A, Dreyer I: Phylogenetic Analysis of K + Transporters in Bryophytes, Lycophytes, and Flowering Plants Indicates a Specialization of Vascular Plants. Plant Sci: Front; 2012:3.
  • [71]Sze H, Geisler M, Murphy AS: Linking the Evolution of Plant Transporters to Their Functions. Plant Sci: Front; 2013:4.
  • [72]Nakashima K, Ito Y, Yamaguchi-Shinozaki K: Transcriptional regulatory networks in response to abiotic stresses in arabidopsis and grasses. Plant Physiol 2009, 149:88-95.
  • [73]Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 2003, 15:63-78.
  • [74]Zhang Z-L, Xie Z, Zou X, Casaretto J, Ho T-hD, Shen QJ: A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 2004, 134:1500-1513.
  • [75]Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Rato C, Poulsen LR, McDowell S, Miller G: A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 2013, 161:1010-1020.
  • [76]Ma W, Ali R, Berkowitz GA: Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 2006, 44:494-505.
  • [77]Clough SJ, Fengler KA, Yu I-C, Lippok B, Smith RK, Bent AF: The Arabidopsis dnd1 “Defense, no Death” Gene Encodes a Mutated Cyclic Nucleotide-Gated ion Channel Leaves. Proc. Natl. Acad. Sci. U.S.A 2000, 97:9323-9328.
  • [78]Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJ: Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 2006, 57:791-800.
  • [79]Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA: The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta 2007, 225:563-573.
  • [80]Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H: Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 2006, 140:1151-1168.
  • [81]Frietsch S: The Role of Cyclic Nucleotide-Gated Channels (CNGC) in Plant Development and Stress Responses in Arabidopsis Thaliana. Germany: Ulm University; 2006. [PhD Thesis]
  • [82]Nicole M-C, Hamel L-P, Morency M-J, Beaudoin N, Ellis BE, Séguin A: MAP-ping genomic organization and organ-specific expression profiles of poplar MAP kinases and MAP kinase kinases. BMC Genomics 2006, 7:223. BioMed Central Full Text
  • [83]Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S: Genome-wide analysis of NAC transcription factor family in rice. Gene 2010, 465:30-44.
  • [84]Ma K, Xiao J, Li X, Zhang Q, Lian X: Sequence and expression analysis of the C3HC4-type RING finger gene family in rice. Gene 2009, 444:33-45.
  • [85]McAinsh MR, Roberts SK, Dubovskaya LV: Calcium Imaging of the Cyclic Nucleotide Response. Methods and Protocols. In Cyclic Nucleotide Signaling in Plants. Volume 1016. Edited by Gehring C. NewYork: Springer; 2013:107-119. ISBN: 978-1-62703-440-1 (Print) 978-1-62703-441-8 (Online)
  • [86]Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S: MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 2007, 8:242. BioMed Central Full Text
  • [87]Boutrot F, Chantret N, Gautier M-F: Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 2008, 9:86. BioMed Central Full Text
  • [88]The Arabidopsis Information Resource http://arabidopsis.org/ webcite
  • [89]The MSU Rice Genome Annotation Project Database http://rice.plantbiology.msu.edu/ webcite
  • [90]BLAST: Basic Local Alignment Search Tool. http://blast.ncbi.nlm.nih.gov/Blast.cgi webcite
  • [91]Phytozome v9.1 http://www.phytozome.net/ webcite
  • [92]The Pfam database http://pfam.sanger.ac.uk/ webcite
  • [93]CDD: a Conserved Domain Database http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi webcite
  • [94]SMART: a Simple Modular Architecture Research Tool http://smart.embl-heidelberg.de/ webcite
  • [95]PROSITE profiles http://prosite.expasy.org/ webcite
  • [96]SUPERFAMILY http://supfam.org/SUPERFAMILY/hmm.html webcite
  • [97]Gene3D http://gene3d.biochem.ucl.ac.uk/ webcite
  • [98]GRAMENE http://www.gramene.org/ webcite
  • [99]Rice TOGO Browser http://agri-trait.dna.affrc.go.jp/ webcite
  • [100]PGDD: The Plant Genome Duplication Database http://chibba.agtec.uga.edu/duplication/ webcite
  • [101]GSDS: Gene Structure Display Server http://gsds.cbi.pku.edu.cn/ webcite
  • [102]ExPASy: SIB Bioinformatics Resource Portal http://www.expasy.org/ webcite
  • [103]PSORT http://psort.hgc.jp/ webcite
  • [104]ScanProsite http://prosite.expasy.org/scanprosite/ webcite
  • [105]Larkin M, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [106]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [107]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9:286-298.
  • [108]Amborella Genome Database http://www.amborella.org/ webcite
  • [109]Price MN, Dehal PS, Arkin AP: FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010, 5:e9490.
  • [110]Ortholog DB - Plant Genome Database Japan http://pgdbj.jp/en/ortholog-db.html webcite
  • [111]UniProt: Universal Protein Resource http://www.uniprot.org/ webcite
  • [112]ConGenIE http://congenie.org/ webcite
  • [113]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 2013, 30:2725-2729.
  • [114]The MEME Suite http://meme.nbcr.net/meme/ webcite
  • [115]Nicholas KB, Nicholas HB, Deerfield DW: GeneDoc: analysis and visualization of genetic variation. EMBNEWNEWS 1997, 4:14.
  • [116]Livark K, Schmittgen T: Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C (T) method. Methods 2001, 25:402-408.
  • [117]Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E: Housekeeping genes as internal standards: use and limits. J Biotechnol 1999, 75:291-295.
  • [118]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative qPCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:1-12. doi:10.1186/gb-2002-3-7-research0034
  • [119]Valente V, Teixeira SA, Neder L, Okamoto OK, Oba-Shinjo SM, Marie SK, Scrideli CA, Paçó-Larson ML, Carlotti CG: Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative qPCR. BMC Mol Biol 2009, 10:17. BioMed Central Full Text
  • [120]Jain M, Nijhawan A, Tyagi AK, Khurana JP: Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 2006, 2:646-651.
  • [121]Institute S: SAS software, version 9.2. Cary, NC: SAS Institute; 2008.
  • [122]The Rice Expression Profile Database http://ricexpro.dna.affrc.go.jp/ webcite
  文献评价指标  
  下载次数:101次 浏览次数:32次