期刊论文详细信息
BMC Research Notes
Insights into the evolution and domain structure of ataxin-2 proteins across eukaryotes
Plinio Guzmán1  Domingo Jiménez-López1 
[1] Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Apartado Postal 629, Irapuato, Gto 36821, México
关键词: MLLE domain;    Poly(A)-binding protein;    PAM2;    Polyglutamine expansions;    Phylogenetic analysis;    Spinocerebellar ataxia type 2;   
Others  :  1131920
DOI  :  10.1186/1756-0500-7-453
 received in 2014-05-05, accepted in 2014-07-03,  发布年份 2014
PDF
【 摘 要 】

Background

Ataxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2). The molecular basis of SCA2 is the expansion of a polyglutamine tract in Ataxin-2, encoding a Lsm domain that may bind RNA and a PAM2 motif that enables interaction with the poly (A) binding protein. Although the association with SCA2 has been verified, a detailed molecular function for Ataxin-2 has not been established.

Results

We have undertaken a survey of Ataxin-2 proteins across all eukaryotic domains. In eukaryotes, except for vertebrates and land plants, a single ortholog was identified. Notably, with the exception of birds, two Ataxin-2 genes exist in vertebrates. Expansion was observed in land plants and a novel class lacking the LsmAD domain was identified. Large polyQ tracts appear limited to primates and insects of the orders Hymenoptera and Diptera. A common feature across Ataxin-2 orthologs is the presence of proline-rich motifs, formerly described in the human protein.

Conclusion

Our analysis provides valuable information on the evolution and domain structure of Ataxin-2 proteins. Proline-rich motifs that may mediate protein interactions are widespread in Ataxin-2 proteins, but expansion of polyglutamine tracts associated with spinocerebellar ataxia type 2, is present only in primates, as well as some insects. Our analysis of Ataxin-2 proteins provides also a source to examine orthologs in a number of different species.

【 授权许可】

   
2014 Jiménez-López and Guzmán; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150303115950813.pdf 3679KB PDF download
Figure 7. 240KB Image download
Figure 6. 119KB Image download
Figure 5. 226KB Image download
Figure 4. 77KB Image download
Figure 3. 176KB Image download
Figure 2. 126KB Image download
Figure 1. 100KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Lastres-Becker I, Rüb U, Auburger G: Spinocerebellar ataxia 2 (SCA2). Cerebellum 2008, 7:115-124.
  • [2]Tharun S: Roles of eukaryotic Lsm proteins in the regulation of mRNA function. Int Rev Cell Mol Biol 2008, 272:149-189.
  • [3]Neuwald AF, Koonin EV: Ataxin-2, global regulators and bacterial gene expression, and spliceosomal snRNP proteins share a conserved domain. J Mol Med 1998, 76:3-5.
  • [4]Bannykh SI, Nishimura N, Balch WE: Getting into the Golgi. Trends Cell Biol 1998, 8:21-25.
  • [5]Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo M-L, Lehrach H, Krobitsch S: Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 2007, 18:1385-1396.
  • [6]Kozlov G, Ménade M, Rosenauer A, Nguyen L, Gehring K: Molecular determinants of PAM2 recognition by the MLLE domain of poly (A)-binding protein. J Mol Biol 2010, 397:397-407.
  • [7]Kozlov G, Safaee N, Rosenauer A, Gehring K: Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly (A)-binding protein. J Biol Chem 2010, 285:13599-13606.
  • [8]Ralser M, Albrecht M, Nonhoff U, Lengauer T, Lehrach H, Krobitsch S: An integrative approach to gain insights into the cellular function of human ataxin-2. J Mol Biol 2005, 346:203-214.
  • [9]Kozlov G, Gehring K: Molecular basis of eRF3 recognition by the MLLE domain of poly (A)-binding protein. PloS one 2010, 5:e10169.
  • [10]Osawa M, Hosoda N, Nakanishi T, Uchida N, Kimura T, Imai S, Machiyama A, Katada T, Hoshino S-i, Shimada I: Biological role of the two overlapping poly (A)-binding protein interacting motifs 2 (PAM2) of eukaryotic releasing factor eRF3 in mRNA decay. RNA 2012, 18:1957-1967.
  • [11]Kimura Y, Irie K, Irie K: Pbp1 is involved in Ccr4-and Khd1-mediated regulation of cell growth through association with ribosomal proteins Rpl12a and Rpl12b. Eukaryot Cell 2013, 12:864-874.
  • [12]Takahara T, Maeda T: Transient sequestration of TORC1 into stress granules during heat stress. Mol Cell 2012, 47:242-252.
  • [13]Ciosk R, DePalma M, Priess JR: ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline. Development 2004, 131:4831-4841.
  • [14]Sudhakaran IP, Hillebrand J, Dervan A, Das S, Holohan EE, H√ºlsmeier J, Sarov M, Parker R, VijayRaghavan K, Ramaswami M: FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control. Proc Natl Acad Sci 2014, 111:E99-E108.
  • [15]Zhang Y, Ling J, Yuan C, Dubruille R, Emery P: A role for drosophila ATX2 in activation of PER translation and circadian behavior. Science 2013, 340:879-882.
  • [16]Lim C, Allada R: ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in drosophila. Science 2013, 340:875-879.
  • [17]Guo X, Xiang J, Wang Y, O’Brien H, Kabbouche M, Horn P, Powers SW, Hershey AD: Ataxin-2-like is a regulator of stress granules and processing bodies. PloS one 2012, 7:e50095.
  • [18]Bravo J, Aguilar-Henonin L, Olmedo G, Guzman P: Four distinct classes of proteins as interaction partners of the PABC domain of Arabidopsis thaliana poly (A)-binding proteins. Mol Genet Genomics 2005, 272:651-665.
  • [19]Dehal P, Boore JL: Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 2005, 3:e314.
  • [20]Nakatani Y, Takeda H, Kohara Y, Morishita S: Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 2007, 17:1254-1265.
  • [21]Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A: The genome of black cottonwood, populus trichocarpa (torr. & gray). Science 2006, 313:1596-1604.
  • [22]Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F: The genome of the mesopolyploid crop species brassica Rapa. Nat Genet 2011, 43:1035-1039.
  • [23]Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J: Genome sequence of the palaeopolyploid soybean. Nature 2010, 463:178-183.
  • [24]Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R: The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 2012, 72:461-473.
  • [25]Huynh DP, Yang H-T, Vakharia H, Nguyen D, Pulst SM: Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum Mol Genet 2003, 12:1485-1496.
  • [26]Aguilar-Hernandez V, Aguilar-Henonin L, Guzman P: Diversity in the architecture of ATLs, a family of plant ubiquitin-ligases, leads to recognition and targeting of substrates in different cellular environments. PloS one 2011, 6:e23934.
  • [27]Albrecht M, Lengauer T: Survey on the PABC recognition motif PAM2. Biochem Biophys Res Commun 2004, 316:129-138.
  • [28]Maine EM, Hansen D, Springer D, Vought VE: Caenorhabditis elegans atx-2 promotes germline proliferation and the oocyte fate. Genetics 2004, 168:817-830.
  • [29]Mangus DA, Amrani N, Jacobson A: Pbp1p, a factor interacting withSaccharomyces cerevisiae poly (A)-binding protein, regulates polyadenylation. Mol Cell Biol 1998, 18:7383-7396.
  • [30]Ralser M, Nonhoff U, Albrecht M, Lengauer T, Wanker EE, Lehrach H, Krobitsch S: Ataxin-2 and huntingtin interact with endophilin-a complexes to function in plastin-associated pathways. Hum Mol Genet 2005, 14:2893-2909.
  • [31]Munoz-Torres MC, Reese JT, Childers CP, Bennett AK, Sundaram JP, Childs KL, Anzola JM, Milshina N, Elsik CG: Hymenoptera genome database: integrated community resources for insect species of the order hymenoptera. Nucleic Acids Res 2011, 39:D658-D662.
  • [32]Larkin M, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [33]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [34]Shimodaira H, Hasegawa M: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999, 16:1114-1116.
  • [35]Aguilar-Hernandez V, Medina J, Aguilar-Henonin L, Guzman P: Expansion and diversification of BTL RING-H2 ubiquitin ligases in angiosperms: putative Rabring7/BCA2 orthologs. PloS one 2013, 8:e72729.
  • [36]Federhen S: The NCBI taxonomy database. Nucleic Acids Res 2012, 40:D136-D143.
  • [37]Letunic I, Bork P: Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23:127-128.
  • [38]Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009, 37:W202-W208.
  文献评价指标  
  下载次数:96次 浏览次数:4次