BMC Research Notes | |
Insights into the evolution and domain structure of ataxin-2 proteins across eukaryotes | |
Plinio Guzmán1  Domingo Jiménez-López1  | |
[1] Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Apartado Postal 629, Irapuato, Gto 36821, México | |
关键词: MLLE domain; Poly(A)-binding protein; PAM2; Polyglutamine expansions; Phylogenetic analysis; Spinocerebellar ataxia type 2; | |
Others : 1131920 DOI : 10.1186/1756-0500-7-453 |
|
received in 2014-05-05, accepted in 2014-07-03, 发布年份 2014 | |
【 摘 要 】
Background
Ataxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2). The molecular basis of SCA2 is the expansion of a polyglutamine tract in Ataxin-2, encoding a Lsm domain that may bind RNA and a PAM2 motif that enables interaction with the poly (A) binding protein. Although the association with SCA2 has been verified, a detailed molecular function for Ataxin-2 has not been established.
Results
We have undertaken a survey of Ataxin-2 proteins across all eukaryotic domains. In eukaryotes, except for vertebrates and land plants, a single ortholog was identified. Notably, with the exception of birds, two Ataxin-2 genes exist in vertebrates. Expansion was observed in land plants and a novel class lacking the LsmAD domain was identified. Large polyQ tracts appear limited to primates and insects of the orders Hymenoptera and Diptera. A common feature across Ataxin-2 orthologs is the presence of proline-rich motifs, formerly described in the human protein.
Conclusion
Our analysis provides valuable information on the evolution and domain structure of Ataxin-2 proteins. Proline-rich motifs that may mediate protein interactions are widespread in Ataxin-2 proteins, but expansion of polyglutamine tracts associated with spinocerebellar ataxia type 2, is present only in primates, as well as some insects. Our analysis of Ataxin-2 proteins provides also a source to examine orthologs in a number of different species.
【 授权许可】
2014 Jiménez-López and Guzmán; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150303115950813.pdf | 3679KB | download | |
Figure 7. | 240KB | Image | download |
Figure 6. | 119KB | Image | download |
Figure 5. | 226KB | Image | download |
Figure 4. | 77KB | Image | download |
Figure 3. | 176KB | Image | download |
Figure 2. | 126KB | Image | download |
Figure 1. | 100KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Lastres-Becker I, Rüb U, Auburger G: Spinocerebellar ataxia 2 (SCA2). Cerebellum 2008, 7:115-124.
- [2]Tharun S: Roles of eukaryotic Lsm proteins in the regulation of mRNA function. Int Rev Cell Mol Biol 2008, 272:149-189.
- [3]Neuwald AF, Koonin EV: Ataxin-2, global regulators and bacterial gene expression, and spliceosomal snRNP proteins share a conserved domain. J Mol Med 1998, 76:3-5.
- [4]Bannykh SI, Nishimura N, Balch WE: Getting into the Golgi. Trends Cell Biol 1998, 8:21-25.
- [5]Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo M-L, Lehrach H, Krobitsch S: Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 2007, 18:1385-1396.
- [6]Kozlov G, Ménade M, Rosenauer A, Nguyen L, Gehring K: Molecular determinants of PAM2 recognition by the MLLE domain of poly (A)-binding protein. J Mol Biol 2010, 397:397-407.
- [7]Kozlov G, Safaee N, Rosenauer A, Gehring K: Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly (A)-binding protein. J Biol Chem 2010, 285:13599-13606.
- [8]Ralser M, Albrecht M, Nonhoff U, Lengauer T, Lehrach H, Krobitsch S: An integrative approach to gain insights into the cellular function of human ataxin-2. J Mol Biol 2005, 346:203-214.
- [9]Kozlov G, Gehring K: Molecular basis of eRF3 recognition by the MLLE domain of poly (A)-binding protein. PloS one 2010, 5:e10169.
- [10]Osawa M, Hosoda N, Nakanishi T, Uchida N, Kimura T, Imai S, Machiyama A, Katada T, Hoshino S-i, Shimada I: Biological role of the two overlapping poly (A)-binding protein interacting motifs 2 (PAM2) of eukaryotic releasing factor eRF3 in mRNA decay. RNA 2012, 18:1957-1967.
- [11]Kimura Y, Irie K, Irie K: Pbp1 is involved in Ccr4-and Khd1-mediated regulation of cell growth through association with ribosomal proteins Rpl12a and Rpl12b. Eukaryot Cell 2013, 12:864-874.
- [12]Takahara T, Maeda T: Transient sequestration of TORC1 into stress granules during heat stress. Mol Cell 2012, 47:242-252.
- [13]Ciosk R, DePalma M, Priess JR: ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline. Development 2004, 131:4831-4841.
- [14]Sudhakaran IP, Hillebrand J, Dervan A, Das S, Holohan EE, Hülsmeier J, Sarov M, Parker R, VijayRaghavan K, Ramaswami M: FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control. Proc Natl Acad Sci 2014, 111:E99-E108.
- [15]Zhang Y, Ling J, Yuan C, Dubruille R, Emery P: A role for drosophila ATX2 in activation of PER translation and circadian behavior. Science 2013, 340:879-882.
- [16]Lim C, Allada R: ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in drosophila. Science 2013, 340:875-879.
- [17]Guo X, Xiang J, Wang Y, O’Brien H, Kabbouche M, Horn P, Powers SW, Hershey AD: Ataxin-2-like is a regulator of stress granules and processing bodies. PloS one 2012, 7:e50095.
- [18]Bravo J, Aguilar-Henonin L, Olmedo G, Guzman P: Four distinct classes of proteins as interaction partners of the PABC domain of Arabidopsis thaliana poly (A)-binding proteins. Mol Genet Genomics 2005, 272:651-665.
- [19]Dehal P, Boore JL: Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 2005, 3:e314.
- [20]Nakatani Y, Takeda H, Kohara Y, Morishita S: Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 2007, 17:1254-1265.
- [21]Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A: The genome of black cottonwood, populus trichocarpa (torr. & gray). Science 2006, 313:1596-1604.
- [22]Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F: The genome of the mesopolyploid crop species brassica Rapa. Nat Genet 2011, 43:1035-1039.
- [23]Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J: Genome sequence of the palaeopolyploid soybean. Nature 2010, 463:178-183.
- [24]Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R: The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 2012, 72:461-473.
- [25]Huynh DP, Yang H-T, Vakharia H, Nguyen D, Pulst SM: Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum Mol Genet 2003, 12:1485-1496.
- [26]Aguilar-Hernandez V, Aguilar-Henonin L, Guzman P: Diversity in the architecture of ATLs, a family of plant ubiquitin-ligases, leads to recognition and targeting of substrates in different cellular environments. PloS one 2011, 6:e23934.
- [27]Albrecht M, Lengauer T: Survey on the PABC recognition motif PAM2. Biochem Biophys Res Commun 2004, 316:129-138.
- [28]Maine EM, Hansen D, Springer D, Vought VE: Caenorhabditis elegans atx-2 promotes germline proliferation and the oocyte fate. Genetics 2004, 168:817-830.
- [29]Mangus DA, Amrani N, Jacobson A: Pbp1p, a factor interacting withSaccharomyces cerevisiae poly (A)-binding protein, regulates polyadenylation. Mol Cell Biol 1998, 18:7383-7396.
- [30]Ralser M, Nonhoff U, Albrecht M, Lengauer T, Wanker EE, Lehrach H, Krobitsch S: Ataxin-2 and huntingtin interact with endophilin-a complexes to function in plastin-associated pathways. Hum Mol Genet 2005, 14:2893-2909.
- [31]Munoz-Torres MC, Reese JT, Childers CP, Bennett AK, Sundaram JP, Childs KL, Anzola JM, Milshina N, Elsik CG: Hymenoptera genome database: integrated community resources for insect species of the order hymenoptera. Nucleic Acids Res 2011, 39:D658-D662.
- [32]Larkin M, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
- [33]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
- [34]Shimodaira H, Hasegawa M: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999, 16:1114-1116.
- [35]Aguilar-Hernandez V, Medina J, Aguilar-Henonin L, Guzman P: Expansion and diversification of BTL RING-H2 ubiquitin ligases in angiosperms: putative Rabring7/BCA2 orthologs. PloS one 2013, 8:e72729.
- [36]Federhen S: The NCBI taxonomy database. Nucleic Acids Res 2012, 40:D136-D143.
- [37]Letunic I, Bork P: Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23:127-128.
- [38]Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009, 37:W202-W208.