BMC Genomics | |
Genome sequencing of two Neorhizobium galegae strains reveals a noeT gene responsible for the unusual acetylation of the nodulation factors | |
Kristina Lindström4  Lars Paulin5  Jane Thomas-Oates1  J Peter W Young3  John T Sullivan6  Edward Alatalo5  Zhen Zeng2  Pia K Laine5  Joanne Marsh7  Janina Österman3  | |
[1] Centre of Excellence in Mass Spectrometry, University of York, Heslington, York YO10 5DD, UK;Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland;Department of Biology, University of York, Heslington, York YO10 5DD, UK;Department of Environmental Sciences, University of Helsinki, Viikinkaari 2a, 00790 Helsinki, Finland;Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland;Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;Department of Chemistry, University of York, Heslington, York YO10 5DD, UK | |
关键词: Conjugative plasmid; Mass spectrometry; Orthologs; noeT; Nod factor; Genome; Neorhizobium galegae; | |
Others : 1216549 DOI : 10.1186/1471-2164-15-500 |
|
received in 2014-03-21, accepted in 2014-06-12, 发布年份 2014 | |
【 摘 要 】
Background
The species Neorhizobium galegae comprises two symbiovars that induce nodules on Galega plants. Strains of both symbiovars, orientalis and officinalis, induce nodules on the same plant species, but fix nitrogen only in their own host species. The mechanism behind this strict host specificity is not yet known. In this study, genome sequences of representatives of the two symbiovars were produced, providing new material for studying properties of N. galegae, with a special interest in genomic differences that may play a role in host specificity.
Results
The genome sequences confirmed that the two representative strains are much alike at a whole-genome level. Analysis of orthologous genes showed that N. galegae has a higher number of orthologs shared with Rhizobium than with Agrobacterium. The symbiosis plasmid of strain HAMBI 1141 was shown to transfer by conjugation under optimal conditions. In addition, both sequenced strains have an acetyltransferase gene which was shown to modify the Nod factor on the residue adjacent to the non-reducing-terminal residue. The working hypothesis that this gene is of major importance in directing host specificity of N. galegae could not, however, be confirmed.
Conclusions
Strains of N. galegae have many genes differentiating them from strains of Agrobacterium, Rhizobium and Sinorhizobium. However, the mechanism behind their ecological difference is not evident. Although the final determinant for the strict host specificity of N. galegae remains to be identified, the gene responsible for the species-specific acetylation of the Nod factors was identified in this study. We propose the name noeT for this gene to reflect its role in symbiosis.
【 授权许可】
2014 Österman et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150701043802928.pdf | 2863KB | download | |
Figure 7. | 25KB | Image | download |
Figure 6. | 47KB | Image | download |
Figure 5. | 28KB | Image | download |
Figure 4. | 141KB | Image | download |
Figure 3. | 80KB | Image | download |
Figure 2. | 66KB | Image | download |
Figure 1. | 187KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Lindström K: Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 1989, 39:365-367.
- [2]Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindström K: Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 2014, 37:208-215.
- [3]Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A: Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Micr 2008, 58:200-214.
- [4]Terefework Z, Nick G, Suomalainen S, Paulin L, Lindström K: Phylogeny of Rhizobium galegae with respect to other rhizobia and agrobacteria. Int J Syst Bacteriol 1998, 48:349-356.
- [5]Radeva G, Jurgens G, Niemi M, Nick G, Suominen L, Lindström K: Description of two biovars in the Rhizobium Galegae species: biovar orientalis and biovar officinalis. Syst Appl Microbiol 2001, 24:192-205.
- [6]Guasch-Vidal B, Estévez J, Dardanelli MS, Soria-Díaz ME, Fernández de Córdoba F, Balog CIA, Manyani H, Gil-Serrano A, Thomas-Oates J, Hensbergen PJ, Deelder AM, Megías M, van Brussel AAN: High NaCl concentrations induce the nod genes of Rhizobium tropici CIAT899 in the absence of flavonoid inducers. Mol Plant-Microbe Interact 2013, 26:451-460.
- [7]Mergaert P, Van Montagu M, Holsters M: Molecular mechanisms of Nod factor diversity. Mol Microbiol 1997, 25:811-817.
- [8]Dénarié J, Debellé F, Promé JC: Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 1996, 65:503-535.
- [9]D’Haeze W, Holsters M: Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 2002, 12:79R-105R.
- [10]Perret X, Staehelin C, Broughton WJ: Molecular basis of symbiotic promiscuity. Microbiol Mol Biol R 2000, 64:180-201.
- [11]Yang G, Debellé F, Savagnac A, Ferro M, Schiltz O, Maillet F, Promé D, Treilhou M, Vialas C, Lindström K, Dénarié J, Promé J: Structure of the Mesorhizobium huakuii and Rhizobium galegae Nod factors: a cluster of phylogenetically related legumes are nodulated by rhizobia producing Nod factors with α, β-unsaturated N-acyl substitutions. Mol Microbiol 1999, 34:227-237.
- [12]Harrison PW, Lower RPJ, Kim NKD, Young JPW: Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 2010, 18:141-148.
- [13]Glucksmann MA, Reuber TL, Walker GC: Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J Bacteriol 1993, 175:7045-7055.
- [14]Sharypova LA, Niehaus K, Scheidle H, Holst O, Becker A: Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. J Biol Chem 2003, 278:12946-12954.
- [15]Räsänen LA, Russa R, Urbanik T, Choma A, Mayer H, Lindström K: Characterization of two lipopolysaccharide types isolated from Rhizobium galegae. Acta Biochim Pol 1997, 44:819-825.
- [16]Nykyri J, Mattinen L, Niemi O, Adhikari S, Kõiv V, Somervuo P, Fang X, Auvinen P, Mäe A, Palva ET, Pirhonen M: Role and Regulation of the Flp/Tad Pilus in the Virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193. PLoS One 2013, 8:e73718.
- [17]Bedmar EJ, Robles EF, Delgado MJ: The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. Biochem Soc Trans 2005, 33:145-148.
- [18]Monza J, Irisarri P, Díaz P, Delgado MJ, Mesa S, Bedmar E: Denitrification ability of rhizobial strains isolated from Lotus sp. Antonie Van Leeuwenhoek 2006, 89:479-484.
- [19]Sánchez C, Tortosa G, Granados A, Delgado A, Bedmar EJ, Delgado MJ: Involvement of Bradyrhizobium japonicum denitrification in symbiotic nitrogen fixation by soybean plants subjected to flooding. Soil Biol Biochem 2011, 43:212-217.
- [20]Ding H, Yip CB, Hynes MF: Genetic characterization of a novel rhizobial plasmid conjugation system in Rhizobium leguminosarum bv. viciae strain VF39SM. J Bacteriol 2013, 195:328-339.
- [21]Lin J, Ma L, Lai E: Systematic dissection of the Agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation. PLoS One 2013, 8:e67647.
- [22]Ormeño-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF, Rodrigues EP, Nakatani AS, Batista JSS, Chueire LMO, Souza RC, Vasconcelos ATR, Megías M, Hungria M, Martínez-Romero E: Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 2012, 13:735.
- [23]Oresnik IJ, Twelker S, Hynes MF: Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Appl Environ Microbiol 1999, 65:2833-2840.
- [24]Hernandez JA, Curatti L, Aznar CP, Perova Z, Britt RD, Rubio LM: Metal trafficking for nitrogen fixation: NifQ donates molybdenum to NifEN/NifH for the biosynthesis of the nitrogenase FeMo-cofactor. Proc Natl Acad Sci USA 2008, 105:11679-11684.
- [25]Suominen L, Roos C, Lortet G, Paulin L, Lindström K: Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer. Mol Biol Evol 2001, 18:907-916.
- [26]Suominen L, Paulin L, Saano A, Saren A, Tas E, Lindström K: Identification of nodulation promoter (nod-box) regions of Rhizobium galegae. FEMS Microbiol Lett 1999, 177:217-223.
- [27]Songsrirote K: Glycoconjugate mass spectrometry from pathology to symbiosis. PhD thesis. University of York, Department of Chemistry; 2010.
- [28]Spaink HP, Sheeley DM, van Brussel AAN, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJJ: A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 1991, 354:125-130.
- [29]Bloemberg GV, Thomas-Oates JE, Lugtenberg BJJ, Spaink HP: Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin fragments and N-acetylglucosamine in vitro. Mol Microbiol 1994, 11:793-804.
- [30]Firmin JL, Wilson KE, Carlson RW, Davies AE, Downie JA: Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol 1993, 10:351-360.
- [31]Ovtsyna AO, Geurts R, Bisseling T, Lugtenberg BJJ, Tikhonovich IA, Spaink HP: Restriction of host range by the sym2 allele of Afghan pea is nonspecific for the type of modification at the reducing terminus of nodulation signals. Mol Plant-Microbe Interact 1998, 11:418-422.
- [32]Scott DB, Yound CA, Collins-Emerson JM, Terzaghi EA, Rockman ES, Lewis PE, Pankhurst CE: Novel and complex chromosomal arrangement of Rhizobium loti nodulation genes. Mol Plant-Microbe Interact 1996, 9:187-197.
- [33]Corvera A, Promé D, Promé J, Martínez-Romero E, Romero D: The nolL gene from Rhizobium etli determines nodulation efficiency by mediating the acetylation of the fucosyl residue in the nodulation factor. Mol Plant-Microbe Interact 1999, 12:236-246.
- [34]Berck S, Perret X, Quesada-Vincens D, Promé J, Broughton WJ, Jabbouri S: NolL of Rhizobium sp. strain NGR234 is required for O-acetyltransferase activity. J Bacteriol 1999, 181:957-964.
- [35]Op den Camp RHM, Polone E, Fedorova E, Roelofsen W, Squartini A, Op den Camp HJM, Bisseling T, Geurts R: Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. Mol Plant-Microbe Interact 2012, 25:954-963.
- [36]Althabegoiti MJ, Lozano L, Torres-Tejerizo G, Ormeño-Orrillo E, Rogel MA, González V, Martínez-Romero E: Genome sequence of Rhizobium grahamii CCGE502, a broad-host-range symbiont with low nodulation competitiveness in Phaseolus vulgaris. J Bacteriol 2012, 194:6651-6652.
- [37]Morón B, Soria-Díaz ME, Ault J, Verroios G, Noreen S, Rodríguez-Navarro DN, Gil-Serrano A, Thomas-Oates J, Megías M, Sousa C: Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem Biol 2005, 12:1029-1040.
- [38]Estévez J, Soria-Díaz ME, de Córdoba FF, Morón B, Manyani H, Gil A, Thomas-Oates J, Van Brussel AA, Dardanelli MS, Sousa C, Megías M: Different and new Nod factors produced by Rhizobium tropici CIAT899 following Na + stress. FEMS Microbiol Lett 2009, 293:220-231.
- [39]Folch-Mallol JL, Marroquf S, Sousa C, Manyani H, López-Lara IM, van der Drift KMGM, Haverkamp J, Quinto C, Gil-Serrano A, Thomas-Oates J, Spaink HP, Megías M: Characterization of Rhizobium tropici ClAT899 nodulation factors: the role of nodH and nodPQ genes in their sulfation. Mol Plant-Microbe Interact 1996, 9:151-163.
- [40]Olsthoorn MMA, López-Lara IM, Petersen BO, Bock K, Haverkamp J, Spaink HP, Thomas-Oates J: Novel branched Nod factor structure results from α-(1 → 3) fucosyl transferase activity: the major lipo-chitin oligosaccharides from Mesorhizobium loti strain NZP2213 bear an α-(1 → 3) fucosyl substituent on a nonterminal backbone residue. Biochemistry 1998, 37:9024-9032.
- [41]Snoeck C, Luyten E, Poinsot V, Savagnac A, Vanderleyden J, Promé J: Rhizobium sp. BR816 produces a complex mixture of known and novel lipochitooligosaccharide molecules. Mol Plant-Microbe Interact 2001, 14:678-684.
- [42]Poinsot V, Bélanger E, Laberge S, Yang G, Antoun H, Cloutier J, Treilhou M, Dénarié J, Promé J, Debellé F: Unusual methyl-branched α, β-unsaturated acyl chain substitutions in the Nod factors of an arctic rhizobium, Mesorhizobium sp. Strain N33 (Oxytropis arctobia). J Bacteriol 2001, 183:3721-3728.
- [43]Schlaman HRM, Olsthoorn MMA, Harteveld M, Dörner L, Djordjevic MA, Thomas-Oates J, Spaink HP: The production of species-specific highly unsaturated fatty acyl-containing LCOs from Rhizobium leguminosarum bv. trifolii is stringently regulated by nodD and involves the nodRL genes. Mol Plant-Microbe Interact 2006, 19:215-226.
- [44]Staehelin C, Schultze M, Kondorosi É, Mellor RB, Boiler T, Kondorosi A: Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant J 1994, 5:319-330.
- [45]Schultze M, Staehelin C, Brunner F, Genetet I, Legrand M, Fritig B, Kondorosi É, Kondorosi Á: Plant chitinase/lysozyme isoforms show distinct substrate specificity and cleavage site preference towards lipochitooligosaccharide Nod signals. Plant J 1998, 16:571-580.
- [46]Salazar E, Díaz-Mejía JJ, Moreno-Hagelsieb G, Martínez-Batallar G, Mora Y, Mora J, Encarnación S: Characterization of the NifA-RpoN regulon in Rhizobium etli in free life and in symbiosis with Phaseolus vulgaris. Appl Environ Microbiol 2010, 76:4510-4520.
- [47]Michiels J, Moris M, Dombrecht B, Verreth C, Vanderleyden J: Differential regulation of Rhizobium etli rpoN2 gene expression during symbiosis and free-living growth. J Bacteriol 1998, 180:3620-3628.
- [48]Poggio S, Osorio A, Dreyfus G, Camarena L: Transcriptional specificity of RpoN1 and RpoN2 involves differential recognition of the promoter sequences and specific interaction with the cognate activator proteins. J Biol Chem 2006, 281:27205-27215.
- [49]van Slooten JC, Bhuvanasvari TV, Bardin S, Stanley J: Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses. Mol Plant-Microbe Interact 1992, 5:179-186.
- [50]Fumeaux C, Bakkou N, Kopcińska J, Golinowski W, Westenberg DJ, Müller P, Perret X: Functional analysis of the nifQdctA1y4vGHIJ operon of Sinorhizobium fredii strain NGR234 using a transposon with a NifA-dependent read-out promoter. Microbiology 2011, 157:2745-2758.
- [51]Economou A, Hamilton WD, Johnston AW, Downie JA: The Rhizobium nodulation gene nodO encodes a Ca2+-binding protein that is exported without N-terminal cleavage and is homologous to haemolysin and related proteins. EMBO J 1990, 9:349-354.
- [52]Finnie C, Hartley NM, Findlay KC, Downie JA: The Rhizobium leguminosarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification. Mol Microbiol 1997, 25:135-146.
- [53]Tas É, Leinonen P, Saano A, Räsänen LA, Kaijalainen S, Piippola S, Hakola S, Lindström K: Assessment of competitiveness of rhizobia infecting Galega orientalis on the basis of plant yield, nodulation, and strain identification by antibiotic resistance and PCR. Appl Environ Microbiol 1996, 62:529-535.
- [54]Downie JA, Surin BP: Either of two nod gene loci can complement the nodulation defect of a nod deletion mutant of Rhizobium leguminosarum bv viciae. Mol Gen Genet 1990, 222:81-86.
- [55]Vlassak KM, Luyten E, Verreth C, van Rhijn P, Bisseling T, Vanderleyden J: The Rhizobium sp. BR816 nodO gene can function as a determinant for nodulation of Leucaena leucocephala, Phaseolus vulgaris, and Trifolium repens by a diversity of Rhizobium spp. Mol Plant-Microbe Interact 1998, 11:383-392.
- [56]Economou A, Davies AE, Johnston AWB, Downie JA: The Rhizobium leguminosarum biovar viciae nodO gene can enable a nodE mutant of Rhizobium leguminosarum biovar trifolii to nodulate vetch. Microbiology 1994, 140:2341-2347.
- [57]Sutton JM, Lea EJ, Downie JA: The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes. Proc Natl Acad Sci USA 1994, 91:9990-9994.
- [58]Räsänen LA, Heikkilä-Kallio U, Suominen L, Lipsanen P, Lindström K: Expression of Rhizobium galegae common nod clones in various backgrounds. Mol Plant-Microbe Interact 1991, 4:535-544.
- [59]He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C: Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 2003, 185:809-822.
- [60]Bladergroen MR, Badelt K, Spaink HP: Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant-Microbe Interact 2003, 16:53-64.
- [61]Wilson K: Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology. Volume 1. Edited by Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. New York: John Wiley & Sons Inc; 1994:2.4.1-2.4.5.
- [62]Hyatt D, Chen G, LoCascio P, Land M, Larimer F, Hauser L: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010, 11:119.
- [63]Lowe TM, Eddy SR: tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955-964.
- [64]Lagesen K, Hallin P, Rødland EA, Stærfeldt H, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35:3100-3108.
- [65]Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16:944-945.
- [66]Darling AE, Mau B, Perna NT: ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5:e11147.
- [67]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41.
- [68]Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH: CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 2013, 41:D348-D352.
- [69]Li L, Stoeckert CJ, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13:2178-2189.
- [70]Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL: Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25:1422-1423.
- [71]Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19:1639-1645.
- [72]Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. BMC Bioinformatics 2009, 10:421.
- [73]Carver TJ, Rutherford KM, Berriman M, Rajandream M, Barrell BG, Parkhill J: ACT: the Artemis comparison tool. Bioinformatics 2005, 21:3422-3423.
- [74]Peden JF: Analysis of codon usage. PhD thesis. University of Nottingham, Department of Genetics; 1999.