期刊论文详细信息
BMC Research Notes
“Affect of anaerobiosis on the antibiotic susceptibility of H. influenzae”
Victoria Nguyen2  Arnold Lee Smith2  Edison S Calaunan2  Kevin Lee Nelson2  Hannah Kendall Smith1 
[1] Division of Infectious Disease, Department of Pediatrics, Columbia University, 650 West 168th Street, New York, NY 10032 USA;Center for Childhood Infections, Seattle Children’ Research Institute, 1900 Ninth Ave Seattle, WA 98101 Seattle, USA
关键词: Anaerobiosis;    Antibiotic activity;    Haemophilus influenzae;   
Others  :  1142381
DOI  :  10.1186/1756-0500-6-241
 received in 2013-04-29, accepted in 2013-06-21,  发布年份 2013
PDF
【 摘 要 】

Background

Haemophilus influenzae is a human-restricted facultative anaerobe which resides mostly in the oropharynx. The majority of isolates recovered from the throat are unencapsulated commensals (NTHi), but depending on host susceptibility they cause bronchitis, otitis media and on occasion bacteremia and meningitis. Because of the variable oxygen availability in the various niche permitting bacterium replication, the organism must thrive in well oxygenated surfaces, such as pharyngeal epithelium to anoxic environments like the bottom of a Biofilm and in airway mucus. Other reports indicate that H. influenzae use aerobic respiration, anaerobic respiration and fermentation to generate ATP. To gain insight in to the activity of several classes of antibiotics against five well-characterized unencapsulated H. influenzae in room air, in 5% CO2 and under strict anaerobiosis. We also tested for the role of oxidative killing by all cidal antibiotics.

Results

In comparison to room air, testing in 5% CO2 had minimal effects on the susceptibility to aminoglycosides, cephalosporins, tetracycline and chloramphenicol: the MIC of rifampin and ciprofloxacin increased eight fold with certain strains in 5% CO2. All antibiotics, except trimethoprim were cidal under both growth conditions. Aminoglycosides remained bactericidal in a strict anaerobic environment, while a reliable MBC was obtained with trimethoprim only under anaerobic conditions. Kinetic analysis of the cidal action of spectinomycin and tetracycline indicated slower killing anaerobically. An oxidative mechanism for aerobic killing could not be demonstrated.

Conclusions

We conclude that β-lactams, cephalosporins, macrolides, tetracycline’s, aminoglycosides, chloramphenicol, rifampin and ciprofloxacin are bactericidal against five well-characterizes H. influenzae in an aerobic and anaerobic environment. The activity of trimethoprim was increased in anaerobic conditions.

【 授权许可】

   
2013 Smith et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328042313887.pdf 551KB PDF download
Figure 3. 33KB Image download
Figure 2. 32KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST, Williams and Wilkins: Bergey's Manual of determinative bacteriology. 9th edition. 1994, 195.
  • [2]Raghunathan A, Price ND, Galperin MY, Makarova KS, Purvine S, Picone AF, Cherny T, Xie T, Reilly TJ, Munson R Jr, et al.: In silico metabolic model and protein expression of Haemophilus influenzae strain Rd KW20 in rich medium. OMICS 2004, 8(1):25-41.
  • [3]Kolker E, Purvine S, Galperin MY, Stolyar S, Goodlett DR, Nesvizhskii AI, Keller A, Xie T, Eng JK, Yi E, et al.: Initial proteome analysis of model microorganism Haemophilus influenzae strain Rd KW20. J Bacteriol 2003, 185(15):4593-4602.
  • [4]D'Mello RA, Langford PR, Kroll JS: Role of bacterial Mn-cofactored superoxide dismutase in oxidative stress responses, nasopharyngeal colonization, and sustained bacteremia caused by Haemophilus influenzae type b. Infect Immun 1997, 65(7):2700-2706.
  • [5]De Souza-Hart JA, Blackstock W, Di Modugno V, Holland IB, Kok M: Two-component systems in Haemophilus influenzae: a regulatory role for ArcA in serum resistance. Infect Immun 2003, 71(1):163-172.
  • [6]Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg DP, Dice B, Burrows A, et al.: Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006, 296(2):202-211.
  • [7]Swords WE, Moore ML, Godzicki L, Bukofzer G, Mitten MJ, VonCannon J: Sialylation of lipooligosaccharides promotes biofilm formation by nontypeable Haemophilus influenzae. Infect Immun 2004, 72(1):106-113.
  • [8]Hall-Stoodley L, Stoodley P: Evolving concepts in biofilm infections. Cell Microbiol 2009, 11(7):1034-1043.
  • [9]Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ: A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007, 130(5):797-810.
  • [10]Andrews JM: Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001, 48(Suppl 1):5-16.
  • [11]Kohanski MA, Dwyer DJ, Collins JJ: How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 2010, 8(6):423-435.
  • [12]Nichols WW, Young SN: Respiration-dependent uptake of dihydrostreptomycin by Escherichia coli. Its irreversible nature and lack of evidence for a uniport process. Biochem J 1985, 228(2):505-512.
  • [13]Schnappinger D, Hillen W: Tetracycline’s: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol 1996, 165(6):359-369.
  • [14]Levy J, Burns JL, Mendelman PM, Wong K, Mack K, Smith AL: Effect of tobramycin on protein synthesis in 2-deoxystreptamine aminoglycoside-resistant clinical isolates of Haemophilus influenzae. AntimicrobAgents Chemother 1986, 29(3):474-481.
  • [15]Wong SM, Alugupalli KR, Ram S, Akerley BJ: The ArcA regulon and oxidative stress resistance in Haemophilus influenzae. Mol Microbiol 2007, 64(5):1375-1390.
  • [16]Wong SaA BJ: Coordinated regulation of stress and virulence in stages of Haemophilus pathogenesis. In Stress response in pathogenic bacteria Edited by Kidd S. 2011, 33-47. chapter 2
  • [17]Harrison A, Bakaletz LO, Munson RS Jr: Haemophilus influenzae and oxidative stress. Front Cell Infect Microbiol 2012, 2:40.
  • [18]Harrington JC, Wong SM, Rosadini CV, Garifulin O, Boyartchuk V, Akerley BJ: Resistance of Haemophilus influenzae to reactive nitrogen donors and gamma interferon-stimulated macrophages requires the formate-dependent nitrite Reductase regulator-activated ytfE gene. Infect Immun 2009, 77(5):1945-1958.
  • [19]Sabra W, Kim EJ, Zeng AP: Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled micro aerobic and aerobic cultures. Microbiology 2002, 148(Pt 10):3195-3202.
  • [20]Tatusov RL, Mushegian AR, Bork P, Brown NP, Hayes WS, Borodovsky M, Rudd KE, Koonin EV: Metabolism and evolution of Haemophilus influenzae deduced from a whole- genome comparison with Escherichia coli. CurrBiol 1996, 6(3):279-291.
  • [21]Rolfe MD, Ocone A, Stapleton MR, Hall S, Trotter EW, Poole RK, Sanguinetti G, Green J: Systems analysis of transcription factor activities in environments with stable and dynamic oxygen concentrations. Open Biol 2012, 2(7):120091.
  • [22]Evers S, Di Padova K, Meyer M, Fountoulakis M, Keck W, Gray CP: Strategies towards a better understanding of antibiotic action: folate pathway inhibition in Haemophilus influenzae as an example. Electrophoresis 1998, 19(11):1980-1988.
  • [23]Schlessinger D: Failure of aminoglycoside antibiotics to kill anaerobic, low-pH, and resistant cultures. Clin Microbiol Rev 1988, 1(1):54-59.
  • [24]Liu Y, Imlay JA: Cell death from antibiotics without the involvement of reactive oxygen species. Science 2013, 339(6124):1210-1213.
  • [25]Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K: Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 2013, 339(6124):1213-1216.
  • [26]Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al.: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269(5223):496-512.
  • [27]Nizet V, Colina KF, Almquist JR, Rubens CE, Smith AL: A virulent nonencapsulated Haemophilus influenzae. J Infect Dis 1996, 173(1):180-186.
  • [28]Barenkamp SJ, Leininger E: Cloning, expression, and DNA sequence analysis of genes encoding nontypeable Haemophilus influenzae high-molecular-weight surface-exposed proteins related to filamentous hemagglutinin of Bordetella pertussis. Infect Immun 1992, 60(4):1302-1313.
  • [29]Harrison A, Dyer DW, Gillaspy A, Ray WC, Mungur R, Carson MB, Zhong H, Gipson J, Gipson M, Johnson LS, et al.: Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae : comparative study with H. influenzae serotype d, strain KW20. J Bacteriol 2005, 187(13):4627-4636.
  • [30]Doern GV: In vitro susceptibility testing of Haemophilus influenzae: review of new National Committee for Clinical Laboratory Standards recommendations. J Clin Microbiol 1992, 30(12):3035-3038.
  • [31]Imhof A, Heinzer I: Continuous monitoring of oxygen concentrations in several systems for cultivation of anaerobic bacteria. J Clin Microbiol 1996, 34(7):1646-1648.
  文献评价指标  
  下载次数:24次 浏览次数:15次