期刊论文详细信息
BMC Genomics
Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean
Mariangela Hungria3  Ana Tereza Ribeiro Vasconcelos1  Esperanza Martínez-Romero4  Andre Shigueyoshi Nakatani3  Jesiane Stefânia Silva Batista2  Fernando Gomes Barcellos5  Luiz Gonzaga Paula Almeida1  Elisete Pains Rodrigues5  Rangel Celso Souza1  Ernesto Ormeño-Orrillo4  Arthur Fernandes Siqueira3 
[1] Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071, Brazil;Department Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa (UEPG), Av. General Carlos Cavalcanti 4748, Ponta Grossa, PR 84030-900, Brazil;Embrapa Soja, C.P. 231, Londrina, PR 86001-970, Brazil;Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico;UEL, Depto. General Biology, C.P. 60001, Londrina, PR 86051-990, Brazil
关键词: Phytohormone synthesis;    Secondary metabolism;    Surface polysaccharides;    Membrane transporters;    Horizontal gene transfer;    Secretion systems;    Competitiveness;    Nitrogen fixation;    Nodulation;    Symbiosis;   
Others  :  1216752
DOI  :  10.1186/1471-2164-15-420
 received in 2014-03-02, accepted in 2014-05-20,  发布年份 2014
PDF
【 摘 要 】

Background

The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T.

Results

Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15.

Conclusions

Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.

【 授权许可】

   
2014 Siqueira et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150702070556423.pdf 2813KB PDF download
Figure 4. 154KB Image download
Figure 3. 91KB Image download
Figure 2. 127KB Image download
Figure 1. 94KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Hungria M, Mendes IC, de Bruijn F: Nitrogen fixation with soybean: the perfect symbiosis? In Biological Nitrogen Fixation. New Jersey: Wiley Publisher, Hoboken; 2014. in press
  • [2]Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S: Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 2002, 9(6):189-197.
  • [3]Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E: Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 2013, 63(9):3342-3351.
  • [4]Kaneko T, Maita H, Hirakawa H, Uchiike N, Minamisawa K, Watanabe A, Sato S: Complete genome sequence of the soybean symbiont Bradyrhizobium japonicum strain USDA6T. Genes 2011, 2(4):763-787.
  • [5]Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF, Wang S, Wang J, Gilbert LB, Li YR, Chen WX: Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci U S A 2012, 109(22):8629-8634.
  • [6]Hungria M, Campo RJ, Mendes IC, Graham PH: Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: the success of soybean (Glycine max L. Merr.) in South America. In Nitrogen Nutrition and Sustainable Plant Productivity. Edited by Singh RP, Shankar N, Jaiwal PK. Houston: Studium Press, LLC; 2006:43-93.
  • [7]Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC, Arihara J: Nitrogen nutrition of soybean in Brazil: contributions of biological N-2 fixation and N fertilizer to grain yield. Can J Plant Sci 2006, 86:927-939.
  • [8]Ferreira MC, Hungria M: Recovery of soybean inoculants strains from uncropped soils in Brazil. Field Crops Res 2002, 79(2–3):139-152.
  • [9]Hungria M, Vargas MAT: Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 2000, 65(2–3):151-164.
  • [10]Torres AR, Kaschuk G, Saridakis GP, Hungria M: Genetic variability in Bradyrhizobium japonicum strains nodulating soybean [Glycine max (L.) Merrill]. World J Microbiol Biotechnol 2012, 28:1831-1835.
  • [11]Peres JAR, Mendes LC, Suhet AR, Vargas MAT: Eficiência e competitividade de estirpes de rizóbio para soja em solos de cerrado. Rev Bras Ciênc Solo 1993, 17:357-363.
  • [12]Hungria M, Nishi CYM, Cohn J, Stacey G: Comparison between parental and variant soybean Bradyrhizobium strains with regard to the production of lipo-chitin nodulation signals, early stages of root infection, nodule occupancy, and N2 fixation rates. Plant Soil 1996, 186:331-341.
  • [13]Nishi CYM, Boddey LH, Vargas MAT, Hungria M: Morphological, physiological and genetic characterization of two new Bradyrhizobium strains recently recommended as Brazilian commercial inoculants for soybean. Symbiosis 1996, 20(2):147-162.
  • [14]Boddey LH, Hungria M: Phenotypic grouping of Brazilian Bradyrhizobium strains which nodulate soybean. Biol Fertil Soils 1997, 25:407-415.
  • [15]Santos MA, Vargas MAT, Hungria M: Characterization of soybean Bradyrhizobium strains adapted to the Brazilian savannas. FEMS Microbiol Ecol 1999, 30(3):261-272.
  • [16]Barcellos FG, Menna P, da Silva Batista JS, Hungria M: Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian savannah soil. Appl Environ Microbiol 2007, 73(8):2635-2643.
  • [17]Nishi CYM, Hungria M: Effects of soybean [Glycine max (L) Merrill] inoculation in a soil with established population of Bradyrhizobium with strains SEMIA 566, 586, 587, 5019, 5079 and 5080. Pesq Agropec Bras 1996, 31:359-368.
  • [18]Hungria M, Boddey LH, Santos MA, Vargas MAT: Nitrogen fixation capacity and nodule occupancy by Bradyrhizobium japonicum and B. elkanii strains. Biol Fertil Soils 1998, 27:393-399.
  • [19]Batista JSS, Hungria M, Barcellos FG, Ferreira MC, Mendes IC: Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic microsymbiont and the soybean host in a Cerrados soil. Microbial Ecol 2007, 53:270-284.
  • [20]Mendes I, Hungria M, Vargas M: Establishment of bradyrhizobium japonicum and B elkanii strains in a Brazilian Cerrado oxisol. Biol Fertil Soils 2004, 40(1):28-35.
  • [21]Cregan PB, Keyser HH, Sadowsky MJ: Soybean genotype restricting nodulation of a previously unrestricted serocluster 123 bradyrhizobia. Crop Sci 1989, 29(2):307-312.
  • [22]Weber DF, Keyser HH, Uratsu SL: Serological distribution of Bradyrhizobium japonicum from United States soybean production areas. Agron J 1989, 81:786-789.
  • [23]Vargas MAT, Mendes IC, Suhet AR, Peres JRR: Serological distribution of Bradyrhizobium japonicum from Brazilian “Cerrados” areas under soybean cultivation. Rev Microbiol 1993, 24(4):239-243.
  • [24]Van Berkum P, Fuhrmann JJ: Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int J Syst Evol Microbiol 2000, 50(6):2165-2172.
  • [25]Keyser HH, Griffin RF: BeltsviIle Rhizobium Culture Collection Catalog. Beltsville, MD, USA: USDA-ARS; 1987.
  • [26]Cytryn EJ, Jitacksorn S, Giraud E, Sadowsky MJ: Insights learned from pBTAi1, a 229-kb accessory plasmid from Bradyrhizobium sp. strain BTAi1 and prevalence of accessory plasmids in other Bradyrhizobium sp. strains. ISME J 2008, 2(2):158-170.
  • [27]Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, et al.: Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 2007, 316(5829):1307-1312.
  • [28]Okubo T, Fukushima S, Itakura M, Oshima K, Longtonglang A, Teaumroong N, Mitsui H, Hattori M, Hattori R, Hattori T, Minamisawa K: Genome analysis suggests that the soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 2013, 79(8):2542-2551.
  • [29]Orozco-Mosqueda MC, Altamirano-Hernandez J, Farias-Rodriguez R, Valencia-Cantero E, Santoyo G: Homologous recombination and dynamics of rhizobial genomes. Res Microbiol 2009, 160(10):733-741.
  • [30]Althabegoiti MJ, Ormeño-Orrillo E, Lozano L, Torres Tejerizo G, Rogel M, Mora J, Martínez-Romero E: Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia. BMC Microbiol 2014, 14(1):6. BioMed Central Full Text
  • [31]Dobrindt U, Hacker J: Whole genome plasticity in pathogenic bacteria. Curr Opin Microbiol 2001, 4(5):550-557.
  • [32]Batista JS, Torres AR, Hungria M: Towards a two-dimensional proteomic reference map of Bradyrhizobium japonicum CPAC 15: spotlighting “hypothetical proteins”. Proteomics 2010, 10(17):3176-3189.33.
  • [33]Goedert WJ: Solos dos Cerrados: Tecnologias e Estratégias de Manejo. Brasília-DF: Embrapa-CPAC; 1985.
  • [34]Hungria M, Chueire LMO, Coca RG, Megías M: Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. Soil Biol Biochem 2001, 33(10):1349-1361.
  • [35]Prell J, Poole P: Metabolic changes of rhizobia in legume nodules. Trends Microbiol 2006, 14(4):161-168.
  • [36]Lodwig EM, Hosie AH, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS: Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 2003, 422(6933):722-726.
  • [37]Prell J, White JP, Bourdes A, Bunnewell S, Bongaerts RJ, Poole PS: Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc Natl Acad Sci U S A 2009, 106(30):12477-12482.
  • [38]D’hooghe I, VanderWauven C, Michiels J, Tricot C, De Wilde P, Vanderleyden J, Stalon V: The arginine deiminase pathway in Rhizobium etli: DNA sequence analysis and functional study of the arcABC genes. J Bacteriol 1997, 179:7403-7409.
  • [39]Göttfert M, Rothlisberger S, Kundig C, Beck C, Marty R, Hennecke H: Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 2001, 183:1405-1412.
  • [40]Garcia M, Dunlap J, Loh J, Stacey G: Phenotypic characterization and regulation of the nolA gene of Bradyrhizobium japonicum. Mol Plant Microbe Interact 1996, 9:625-636.
  • [41]Godoy LP, Vasconcelos ATR, Chueire LMO, Souza RC, Nicolás MF, Barcellos FG, Hungria M: Genomic panorama of Bradyrhizobium japonicum CPAC 15, a commercial inoculant strain largely established in Brazilian soils and belonging to the same serogroup as USDA 123. Soil Biol Biochem 2008, 40:2742-2753.
  • [42]Göttfert M, Grob P, Hennecke H: Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 1990, 87:2680-2684.
  • [43]Loh J, Lohar DP, Andersen B, Stacey G: A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes. J Bacteriol 2002, 184:1759-1766.
  • [44]Grob P, Michel P, Hennecke H, Gottfert M: A novel response-regulator is able to suppress the nodulation defect of a Bradyrhizobium japonicum nodW mutant. Mol Gen Genet 1993, 241:531-541.
  • [45]Schubert KR, Evans HJ: Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc Natl Acad Sci U S A 1976, 73(4):1207-1211.
  • [46]Neves MCP, Hungria M: The physiology of nitrogen fixation in tropical grain legumes. CRC Crit Rev Plant Sci 1987, 6(3):267-321.
  • [47]Hungria M, Neves MCP, Dobereiner J: Relative efficiency, ureide transport and harvest index in soybeans inoculated with isogenic HUP mutants of Bradyrhizobium japonicum. Biology Fertil Soils 1989, 7:325-329.
  • [48]Sl A, Maier RJ, Hanus FJ, Russell SA, Emerich DW, Evans HJ: Hydrogenase in Rhizobium japonicum increases nitrogen fixation by nodulated soybeans. Science 1979, 203(4386):1255-1257.
  • [49]Vignais PM, Billoud B: Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 2007, 107(10):4206-4272.
  • [50]Wiedenbeck J, Cohan FM: Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 2011, 35(5):957-976.
  • [51]Ramsay JP, Sullivan JT, Stuart GS, Lamont IL, Ronson CW: Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Mol Microbiol 2006, 62(3):723-734.
  • [52]Dombrecht B, Vanderleyden J, Michiels J: Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in Gram-negative bacteria. Mol Plant Microbe Interact 2001, 14(3):426-430.
  • [53]Davidson AL, Dassa E, Orelle C, Chen J: Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008, 72(2):317-364.
  • [54]Lippincott JA, Beiderbeck R, Lippincott BB: Utilization of octopine and nopaline by Agrobacterium. J Bacteriol 1973, 116:378-383.
  • [55]Oger P, Mansouri H, Dessaux Y: Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol Ecol 2000, 9:881-890.
  • [56]Gong ZZ, Lee H, Xiong LM, Jagendorf A, Stevenson B, Zhu JK: RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci U S A 2002, 99:11507-11512.
  • [57]Barcellos F, Batista J, Menna P, Hungria M: Genetic differences between Bradyrhizobium japonicum variant strains contrasting in N2-fixation efficiency revealed by representational difference analysis. Arch Microbiol 2009, 191(2):113-122.
  • [58]Sirko A, Hryniewicz M, Hulanicka D, Bock A: Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 1990, 172(6):3351-3357.
  • [59]Fraysse N, Couderc F, Poinsot V: Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem 2003, 270(7):1365-1380.
  • [60]Masson-Boivin C, Giraud E, Perret X, Batut J: Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 2009, 17(10):458-466.
  • [61]Mort AJ, Bauer WD: Composition of the capsular and extracellular polysaccharides of Rhizobium japonicum: Changes with culture age and correlations with binding of soybean seed lectin to the bacteria. Plant Physiol 1980, 66(1):158-163.
  • [62]Mort AJ, Bauer WD: Application of two new methods for cleavage of polysaccharides into specific oligosaccharide fragments. Structure of the capsular and extracellular polysaccharides of Rhizobium japonicum that bind soybean lectin. J Biol Chem 1982, 257(4):1870-1875.
  • [63]Dudman WF: The extracellular polysaccharides of Rhizobium japonicum: compositional studies. Carbohydr Res 1976, 46(1):97-110.
  • [64]Becker BU, Kosch K, Parniske M, Muller P: Exopolysaccharide (EPS) synthesis in Bradyrhizobium japonicum: sequence, operon structure and mutational analysis of an exo gene cluster. Mol Gen Genet 1998, 259(2):161-171.
  • [65]Quelas JI, Mongiardini EJ, Casabuono A, Lopez-Garcia SL, Althabegoiti MJ, Covelli JM, Perez-Gimenez J, Couto A, Lodeiro AR: Lack of galactose or galacturonic acid in Bradyrhizobium japonicum USDA 110 exopolysaccharide leads to different symbiotic responses in soybean. Mol Plant Microbe Interact 2010, 23(12):1592-1604.
  • [66]McIntosh M, Stone BA, Stanisich VA: Curdlan and other bacterial (1→3)-beta-D-glucans. Appl Microbiol Biotechnol 2005, 68(2):163-173.
  • [67]Mithofer A: Suppression of plant defence in rhizobia-legume symbiosis. Trends Plant Sci 2002, 7(10):440-444.
  • [68]Gay-Fraret J, Ardissone S, Kambara K, Broughton WJ, Deakin WJ, Le Quere A: Cyclic-beta-glucans of Rhizobium (Sinorhizobium) sp. strain NGR234 are required for hypo-osmotic adaptation, motility, and efficient symbiosis with host plants. FEMS Microbiol Lett 2012, 333(1):28-36.
  • [69]Gore RS, Miller KJ: Cyclic [beta]-1,6–1,3 glucans are synthesized by Bradyrhizobium japonicum bacteroids within soybean (Glycine max) root nodules. Plant Physiol 1993, 102(1):191-194.
  • [70]Miller KJ, Hadley JA, Gustine DL: Cyclic [beta]-1,6-1,3-glucans of Bradyrhizobium japonicum USDA 110 elicit isoflavonoid production in the soybean (Glycine max) host. Plant Physiol 1994, 104(3):917-923.
  • [71]Bohin JP: Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett 2000, 186(1):11-19.
  • [72]Bhagwat AA, Mithofer A, Pfeffer PE, Kraus C, Spickers N, Hotchkiss A, Ebel J, Keister DL: Further studies of the role of cyclic beta-glucans in symbiosis. An NdvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1→3)-beta-glucosyl. Plant Physiol 1999, 119(3):1057-1064.
  • [73]Chen R, Bhagwat AA, Yaklich R, Keister DL: Characterization of ndvD, the third gene involved in the synthesis of cyclic β-(13), (16)-D-glucans in Bradyrhizobium japonicum. Can J Microbiol 2002, 48(11):1008-1016.
  • [74]Choma A, Komaniecka I: Straight and branched (omega-1)-hydroxylated very long chain fatty acids are components of Bradyrhizobium lipid A. Acta Biochim Pol 2011, 58(1):51-57.
  • [75]Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall’Angelo S, Zanda M, Mergaert P, Ferguson GP: Molecular insights into bacteroid development during Rhizobium–legume symbiosis. FEMS Microbiol Rev 2013, 37(3):364-383.
  • [76]Chang W-S, Park K-M, Koh S-C, So J-S: Characterization of the Bradyrhizobium japonicum galE gene: its impact on lipopolysaccharide profile and nodulation of soybean. FEMS Microbiol Lett 2008, 280(2):242-249.
  • [77]Ormeño-Orrillo E: Lipopolisacáridos de Rhizobiaceae: estructura y biosíntesis. Rev Latinoam Microbiol 2005, 47(3–4):165-175.
  • [78]Linhartová I, Bumba L, Masin J, Basler M, Osicka R, Kamanová J, Prochazkova K, Adkins I, Hejnova-Holubova J, Sadilkova L, Morová J, Sebo P: RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2010, 34(6):1076-1112.
  • [79]Oresnik IJ, Twelker S, Hynes MF: Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Appl Environ Microbiol 1999, 65(7):2833-2840.
  • [80]Barloy-Hubler F, Chéron A, Hellégouarch A, Galibert F: Smc01944, a secreted peroxidase induced by oxidative stresses in Sinorhizobium meliloti 1021. Microbiology 2004, 150(3):657-664.
  • [81]Douzi B, Filloux A, Voulhoux R: On the path to uncover the bacterial type II secretion system. Philos Trans R Soc Lond B Biol Sci 2012, 367(1592):1059-1072.
  • [82]Deakin WJ, Broughton WJ: Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Micro 2009, 7(4):312-320.
  • [83]Krause A, Doerfel A, Göttfert M: Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact 2002, 15(12):1228-1235.
  • [84]Tsukui T, Eda S, Kaneko T, Sato S, Okazaki S, Kakizaki-Chiba K, Itakura M, Mitsui H, Yamashita A, Terasawa K, Minamisawa K: The Type III secretion system of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean plants. Appl Environ Microbiol 2013, 79(3):1048-1051.
  • [85]Juhas M, Crook DW, Hood DW: Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 2008, 10(12):2377-2386.
  • [86]Juhas M, Crook DW, Dimopoulou ID, Lunter G, Harding RM, Ferguson DJ, Hood DW: Novel type IV secretion system involved in propagation of genomic islands. J Bacteriol 2007, 189(3):761-771.
  • [87]Jenkins J, Mayans O, Pickersgill R: Structure and evolution of parallel beta-helix proteins. J Struct Biol 1998, 122(1–2):236-246.
  • [88]Thanassi DG, Stathopoulos C, Karkal A, Li H: Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of gram-negative bacteria (review). Mol Membr Biol 2005, 22(1–2):63-72.
  • [89]Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D, Lipscomb L, Kim HS, Mrázek J, Nierman WC, DeShazer D: Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 2007, 64(6):1466-1485.
  • [90]Zheng J, Leung KY: Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 2007, 66(5):1192-1206.
  • [91]Records AR: The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact 2011, 24(7):751-757.
  • [92]Bladergroen MR, Badelt K, Spaink HP: Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 2003, 16(1):53-64.
  • [93]Pelicic V: Type IV pili: e pluribus unum? Mol Microbiol 2008, 68(4):827-837.
  • [94]Tomich M, Planet PJ, Figurski DH: The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 2007, 5(5):363-375.
  • [95]Kanbe M, Yagasaki J, Zehner S, Goettfert M, Aizawa SI: Characterization of two sets of subpolar flagella in Bradyrhizobium japonicum. J Bacteriol 2007, 189:1083-1089.
  • [96]Althabegoiti MJ, Covelli JM, Perez-Gimenez J, Quelas JI, Mongiardini EJ, Lopez MF, Lopez-Garcia SL, Lodeiro AR: Analysis of the role of the two flagella of Bradyrhizobium japonicum in competition for nodulation of soybean. FEMS Microbiol Lett 2011, 319:133-139.
  • [97]Miller MB, Bassler BL: Quorum sensing in bacteria. Annu Rev Microbiol 2001, 55:165-199.
  • [98]Gonzalez JE, Marketon MM: Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 2003, 67:574-592.
  • [99]Sanchez-Contreras M, Bauer WD, Gao MS, Robinson JB, Downie JA: Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond B Biol Sci 2007, 362:1149-1163.
  • [100]Pongsilp N, Triplett EW, Sadowsky MJ: Detection of homoserine lactone-like quorum sensing molecules in Bradyrhizobium strains. Curr Microbiol 2005, 51:250-254.
  • [101]Lindemann A, Pessi G, Schaefer AL, Mattmann ME, Christensen QH, Kessler A, Hennecke H, Blackwell HE, Greenberg EP, Harwood CS: Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 2011, 108:16765-16770.
  • [102]Winkelmann G: Microbial siderophore-mediated transport. Biochem Soc Trans 2002, 30(4):691-696.
  • [103]Guerinot ML, Meidl EJ, Plessner O: Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol 1990, 172:3298-3303.
  • [104]Lesueur D, Diem HG, Meyer JM: Iron requirement and siderophore production in Bradyrhizobium strains isolated from Acacia mangium. J Appl Microbiol 1993, 74:675-682.
  • [105]Nambiar PTC, Sivaramakrishnan S: Detection and assay of siderophores in cowpea rhizobia (Bradyrhizobium) using radioactive Fe. Lett Appl Microbiol 1987, 4:37-40.
  • [106]Datta B, Chakrabartty P: Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. Biotech 2013, 1-11. doi:10.1007/s13205-013-0164-y
  • [107]Bossier P, Hofte M, Verstraete W: Ecological significance of siderophores in soil. Adv Microb Ecol 1988, 10:385-414.
  • [108]Geetha SJ, Joshi SJ: Engineering rhizobial bioinoculants: a strategy to improve iron nutrition. Sci World J 2013. doi:10.1155/2013/315890
  • [109]Plessner O, Klapatch T, Guerinot ML: Siderophore utilization by Bradyrhizobium japonicum. Appl Environ Microbiol 1993, 59:1688-1690.
  • [110]Ding Y, Oldroyd GED: Positioning the nodule, the hormone dictum. Plant Signal Behav 2009, 4(2):89-93.
  • [111]Ryu H, Cho H, Choi D, Hwang I: Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol Cells 2012, 34:117-126.
  • [112]Malthesius U: Auxin: at the root of nodule development? J Funct Plant Biol 2008, 35(8):651-668.
  • [113]Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K: Cytokinin: secret agent of symbiosis. Trends Plant Sci 2008, 13:115-120.
  • [114]Frebort I, Kowalska M, Hluska T, Frebortova J, Galuszka P: Evolution of cytokinin biosynthesis and degradation. J Exp Bot 2011, 62:2431-2452.
  • [115]Sturtevant DB, Taller BJ: Cytokinin production by Bradyrhizobium japonicum. Plant Physiol 1989, 89:1247-1252.
  • [116]Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V: Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 2007, 74(4):874-880.
  • [117]Podlesakova K, Fardoux J, Patrel D, Bonaldi K, Novak O, Strnad M, Giraud E, Spichal L, Nouwen N: Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic bradyrhizobia and Aeschynomene legumes. Mol Plant Microbe Interact 2013, 26:1232-1238.
  • [118]Sekine M, Ichikawa T, Kuga N, Kobayashi M, Sakurai A, Syono K: Detection of the IAA biosynthetic-pathway from tryptophan via indole-3-acetamide in Bradyrhizobium spp. Plant Cell Physiol 1988, 29:867-874.
  • [119]Sekine M, Watanabe K, Syono K: Molecular cloning of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum. J Bacteriol 1989, 171:1718-1724.
  • [120]Vega-Hernández MC, Leon-Barrios M, Perez-Galdona R: Indole-3-acetic acid production from indole-3-acetonitrile in Bradyrhizobium. Soil Biol Biochem 2002, 34:665-668.
  • [121]Hunter WJ: Influence of 5-methyltryptophan-resistant Bradyrhizobium japonicum on soybean root nodule indole-3-acetic-acid content. Appl Environ Microbiol 1987, 53:1051-1055.
  • [122]Hunter WJ: Indole-3-acetic-acid production by bacteroids from soybean root-nodules. Physiol Plant 1989, 76:31-36.
  • [123]Kaneshiro T, Kwolek WF: Stimulated nodulation of soybeans by Rhizobium japonicum mutant (B-14075) that catabolizes the conversion of tryptophan to indol-3yl-acetic acid. Plant Sci 1985, 42(3):141-146.124.
  • [124]Spaepen S, Vanderleyden J: Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 2011, 3:a001438.
  • [125]Spaepen S, Vanderleyden J, Remans R: Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 2007, 31(4):425-448.
  • [126]Patten CL, Blakney AJC, Coulson TJD: Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 2013, 39:395-415.
  • [127]Lehmann T, Hoffmann M, Hentrich M, Pollmann S: Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol 2010, 89:895-905.
  • [128]Zhu D, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L: A new nitrilase from Bradyrhizobium japonicum USDA 110: Gene cloning, biochemical characterization and substrate specificity. J Biotechnol 2008, 133(3):327-333.
  • [129]Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R: Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 1998, 204:57-67.
  • [130]Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, de Lajudie P, Dreyfus B: Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 2000, 66(12):5437-5447.
  • [131]Rouws LFM, Leite J, de Matos GF, Zilli JE, Coelho MRR, Xavier GR, Fischer D, Hartmann A, Reis VM, Baldani JI: Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies. Environ Microbiol Rep 2013, n/a-n/a. doi:10.1111/1758-2229.12122
  • [132]Fischer D, Pfitzner B, Schmid M, Simoes-Araújo JL, Reis VM, Pereira W, Ormeño-Orrillo E, Hai B, Hofmann A, Schloter M, Martinez-Romero E, Baldani JI, Hartmann A: Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant Soil 2012, 356(1–2):83-99.
  • [133]Donati AJ, Lee HI, Leveau JHJ, Chang WS: Effects of indole-3-acetic acid on the transcriptional activities and stress tolerance of Bradyrhizobium japonicum. PLoS One 2013, 8(10):e76559. 134
  • [134]O’Brien J, Wright GD: An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 2011, 22:552-558.
  • [135]Davies J: Secondary metabolites - their function and evolution - introduction. Ciba Found Symp 1992, 171:1-2.
  • [136]Demain AL: Microbial natural products: alive and well in 1998. Nature Biotechnol 1998, 16(1):3-4.
  • [137]Park K-K, Chun K-S, Lee J-M, Lee SS, Surh Y-J: Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice. Cancer Lett 1998, 129(2):139-144.
  • [138]Zhao LQ, Chen YL, Ren S, Han Y, Cheng HB: Studies on the chemical structure and antitumor activity of an exopolysaccharide from Rhizobium sp N613. Carbohydr Res 2010, 345:637-643.
  • [139]Cushnie TPT, Lamb AJ: Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005, 26(5):343-356.
  • [140]Niemeyer HM: Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the gramineae. Phytochemistry 1988, 27(11):3349-3358.
  • [141]Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R: antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011, 39(suppl. 2):W339-W346.
  • [142]Dowling DN, Broughton WJ: Competition for nodulation of legumes. Annu Rev Microbiol 1986, 40:131-157.
  • [143]Almeida LG, Paixao R, Souza RC, Costa GC, Barrientos FJ, Santos MT, Almeida DF, Vasconcelos AT: A system for automated bacterial (genome) integrated annotation–SABIA. Bioinformatics 2004, 20(16):2832-2833.
  • [144]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008, 9:75. BioMed Central Full Text
  • [145]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5(2):R12. BioMed Central Full Text
  • [146]Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5(6):e11147.
  • [147]Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N: The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 1999, 96:2896-2901.
  • [148]Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [149]Oliveros JC: VENNY. An interactive tool for comparing lists with Venn Diagrams. 2007. http://bioinfogp.cnb.csic.es/tools/venny/index.html webcite
  • [150]Pirooznia M, Nagarajan V, Youping D: GeneVenn - a web application for comparing gene lists using Venn diagrams. Bioinformation 2007, 1(10):420-422.
  • [151]Saier MH Jr, Tran CV, Barabote RD: TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 2006, 34(Database issue):D181-D186.
  • [152]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A: The Pfam protein families database. Nucleic Acids Res 2010, 38(Database issue):D211-D222.
  • [153]Eddy SR: Accelerated profile HMM searches. PLoS Comp Biol 2011, 7(10):e1002195.
  • [154]Langille MGI, Brinkman FSL: IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 2009, 25(5):664-665.
  • [155]Bi D, Liu L, Tai C, Deng Z, Rajakumar K, Ou H-Y: SecReT4: a web-based bacterial type IV secretion system resource. Nucleic Acids Res 2013, 41(D1):D660-D665.
  文献评价指标  
  下载次数:53次 浏览次数:36次