期刊论文详细信息
BMC Evolutionary Biology
Diversification and reproductive isolation: cryptic species in the only New World high-duty cycle bat, Pteronotus parnellii
M Brock Fenton5  Paul DN Hebert1  Judith L Eger3  Aline Z Maya-Simões2  Amanda M Adams5  Elizabeth L Clare4 
[1] Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada;Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil;Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada;School of Biological Sciences, University of Bristol, Bristol, UK;Department of Biology, Western University, London, Ontario, Canada
关键词: Pteronotus mesoamericanus;    Speciation;    Biodiversity;    Bats;    Systematics;    DNA barcoding;    Cryptic species;   
Others  :  1130091
DOI  :  10.1186/1471-2148-13-26
 received in 2012-07-10, accepted in 2013-01-17,  发布年份 2013
PDF
【 摘 要 】

Background

Molecular techniques are increasingly employed to recognize the presence of cryptic species, even among commonly observed taxa. Previous studies have demonstrated that bats using high-duty cycle echolocation may be more likely to speciate quickly. Pteronotus parnellii is a widespread Neotropical bat and the only New World species to use high-duty cycle echolocation, a trait otherwise restricted to Old World taxa. Here we analyze morphological and acoustic variation and genetic divergence at the mitochondrial COI gene, the 7th intron region of the y-linked Dby gene and the nuclear recombination-activating gene 2, and provide extensive evidence that P. parnellii is actually a cryptic species complex.

Results

Central American populations form a single species while three additional species exist in northern South America: one in Venezuela, Trinidad and western Guyana and two occupying sympatric ranges in Guyana and Suriname. Reproductive isolation appears nearly complete (only one potential hybrid individual found). The complex likely arose within the last ~6 million years with all taxa diverging quickly within the last ~1-2 million years, following a pattern consistent with the geological history of Central and northern South America. Significant variation in cranial measures and forearm length exists between three of the four groups, although no individual morphological character can discriminate these in the field. Acoustic analysis reveals small differences (5–10 kHz) in echolocation calls between allopatric cryptic taxa that are unlikely to provide access to different prey resources but are consistent with divergence by drift in allopatric species or through selection for social recognition.

Conclusions

This unique approach, considering morphological, acoustic and multi-locus genetic information inherited maternally, paternally and bi-parentally, provides strong support to conclusions about the cessation of gene flow and degree of reproductive isolation of these cryptic species.

【 授权许可】

   
2013 Clare et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226162713482.pdf 3583KB PDF download
Figure 7. 37KB Image download
Figure 6. 32KB Image download
Figure 5. 68KB Image download
Figure 4. 23KB Image download
20140723071406612.pdf 315KB PDF download
Figure 2. 39KB Image download
Figure 1. 97KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Stehli FG, Webb SD: A kaleidoscope of plates, faunal and floral dispersals, and sea level changes. In The Great American Biotic Interchange. Edited by Stehli FG, Webb SD. New York: Plenum Press; 1985:3-15.
  • [2]Gregory-Wodzicki KM: Uplift history of the Central and Northern Andes: A review. Geol Soc Am Bull 2000, 112:1091-1105.
  • [3]Sutherland GD, Harestad AS, Price K, Lertzman KP: Scaling of Natal Dispersal Distances in Terrestrial Birds and Mammals. Conserv Ecol 2000, 4:16.
  • [4]Munguía M, Peterson AT, Sánches-Cordero V: Dispersal limitation and geographical distributions of mammal species. J Biogeogr 2008, 35:1879-1887.
  • [5]Cruzan MB, Templeton AR: Paleoecology and coalescence: phylogeographic analysis of hypotheses from the fossil record. Trends Ecol Evol 2000, 15:491-496.
  • [6]Hoffmann FG, Owen JG, Baker RJ: mtDNA perspective of chromosomal diversification and hybridization in Peters’ tent-making bat (Uroderma bilobatum: Phyllostomidae). Mol Ecol 2003, 12:2981-2993.
  • [7]Baker RJ, Bradley RD: Speciation in mammals and the Genetic Species Concept. J Mammal 2006, 87:643-662.
  • [8]Clare EL, Lim BK, Fenton MB, Hebert PDN: Neotropical bats: Estimating Species Diversity with DNA Barcodes. PLoS One 2011, 6:e22648.
  • [9]Clare EL: Cryptic species? Patterns of Maternal and Paternal Gene Flow in Eight Neotropical Bats. PLoS One 2011, 6:e21460.
  • [10]Avise JC, Walker D: Species realities and numbers in sexual vertebrates: Perspectives from an asexually transmitted genome. P Natl Acad Sci-Biol 1999, 96:992-995.
  • [11]Witt JDS, Threloff DL, Hebert PDN: DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol 2006, 15:3073-3082.
  • [12]Floyd R, Abebe E, Papert A, Blaxter M: Molecular barcodes for soil nematode identification. Mol Ecol 2002, 11:839-850.
  • [13]Reeder DM, Helgen KM, Wilson DE: Global trends and biases in new mammal species discoveries. Occasional Papers The Museum of Texas Tech University 2007, 269:1-35.
  • [14]Randi E, D’Huart J-P, Lucchini V, Aman R: Evidence of two genetically deeply divergent species of warthog, Phacochoerus africanus and P. aethiopicus (Artiodactyla: Suiformes) in East Africa. Mamm Biol 2002, 67:91-96.
  • [15]Xu X, Amason U: The mitochondrial DNA molecule of Sumatran orangutan and a molecular proposal for two (Bornean and Sumatran) species of orangutan. J Mol Evol 1996, 43:431-437.
  • [16]Brown DM, Brenneman RA, Koepfli K-P, Pollinger JP, Milá B, Georgiadis NJ, Louis EE, Grether GF, Jacobs DK, Wayne RK: Extensive population genetic structure in the giraffe. BMC Biol 2007, 5:57.
  • [17]Amato G, Egan MG, Rabinowitz A: A new species of muntjac, Muntiacus putaoensis (Artiodactyla: Cervidae) from northern Myanmar. Anim Conserv 1999, 2:1-7.
  • [18]Wada S, Oishi M, Yamada TK: A newly discovered species of living baleen whale. Nature 2003, 426:278-281.
  • [19]Dalebout ML, Mead JG, Baker CS, Baker AN, Helden AL: A new species of beaked whale Mesoplodon perrini sp.N. (Cetacea: Ziphiidae) discovered through phylogenetic analyses of mitochondrial DNA sequences. Mar Mammal Sci 2002, 18:577-608.
  • [20]Roca AL, Georgiadis N, Pecon-Slattery J, O’Brien SJ: Genetic evidence for two species of elephant in Africa. Science 2001, 293:1473-1477.
  • [21]Jones G: Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species. Adv Stud Behav 1997, 26:317-354.
  • [22]Barratt EM, Deaville R, Burland TM, Bruford MW, Jones G, Racey PA, Wayne RK: DNA answers the call of pipistrelle bat species. Nature 1997, 387:138-139.
  • [23]Mayer F, von Helversen O: Cryptic diversity in European bats. P Roy Soc Lond B Bio 2001, 268:1825-1832.
  • [24]Francis CM, Borisenko AV, Ivanova NV, Eger JL, Lim BK, Guillén-Servent A, Kruskop SV, Mackie I, Hebert PDN: The role of DNA barcodes in understanding and conservation of mammal diversity in Southeast Asia. PLoS One 2010, 5:e12575.
  • [25]Borisenko AV, Lim BK, Ivanova NV, Hanner RH, Hebert PDN: DNA barcoding in surveys of small mammal communities: a field study in Suriname. Mol Ecol Resour 2008, 8:471-479.
  • [26]Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN: DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Mol Ecol Notes 2007, 7:184-190.
  • [27]Long GR, Schnitzler H-U: Behavioural audiograms from the bat, Rhinolophus ferrumequinum. J Comp Physiol A 1975, 100:211-219.
  • [28]Schuller G, Pollak GD: Disproportionate frequency representation in the inferior colliculus of doppler-compensating greater horseshoe bats: evidence for an acoustic fovea. J Comp Physiol A 1979, 132:47-54.
  • [29]Kingston T, Rossiter SJ: Harmonic-hopping in Wallacea's bats. Nature 2004, 429:654-657.
  • [30]Kober R, Schnitzler H-U: Information in sonar echoes of fluttering insects available for echolocation bats. J Acoust Soc Am 1990, 87:882-896.
  • [31]Herd RM: Pteronotus parnellii. Mammalian Species 1983, 209:1-5.
  • [32]Puechmaille SJ, Gouilh MA, Piyapan P, Yokubol M, Mie KM, Bates PJ, Satasook C, Nwe T, Bu SSH, Mackie IJ, Petit EJ, Teeling EC: The evolution of sensory divergences in the context of limited gene flow in the bumblebee bat. Nature Communications 2011, 2:573.
  • [33]Kingston T, Lara MC, Jones G, Akbar Z, Kunz TH, Schneider CJ: Acoustic divergence in two cryptic Hipposideros species: a role for social selection? P Roy Soc Lond B Bio 2001, 268:1381-1386.
  • [34]Houston RD, Boonman AM, Jones G: Do echolocation signal parameters restrict bats’ choice of prey? In Echolocation in bats and dolphins. Edited by Thomas JA, Moss CF, Vater M. Chicago: The University of Chicago Press; 2004:339-345.
  • [35]Jones G, Barlow KE: Cryptic species of echolocating bats. In Echolocation in bats and dolphins. Edited by Thomas JA, Moss CF, Vater M. Chicago: The University of Chicago Press; 2004:345-349.
  • [36]Bradley RD, Baker RJ: A test of the genetic species concept: cytochrome b sequences and mammals. J Mammal 2001, 82:960-973.
  • [37]Solari S, Baker RJ: Mitochondrial DNA sequence, karyotypic and morphological variation in the Carollia castanea species complex (Chiroptera: Phyllostomidae) with description of a new species. Occasional Papers The Museum of Texas Tech University 2006, 254:1-16.
  • [38]Lewis-Oritt N, Porter CA, Baker RJ: Molecular systematics of the family Mormoopidae (Chiroptera) based on cytochrome b and recombination activating gene 2 sequences. Mol Phylogenet Evol 2001, 20:426-436.
  • [39]Van Den Bussche RA, Hoofer SR, Simmons NB: Phylogenetic relationships of mormoopid bats using mitochondrial gene sequences and morphology. J Mammal 2002, 83:40-48.
  • [40]Lim BK, Engstrom MD, Bickham JW, Patton JC: Molecular phylogeny of New World sheath-tailed bats (Emballonuridae: Diclidurini) based on loci from the four genetic transmission systems of mammals. Biol J Linn Soc 2008, 93:189-209.
  • [41]Baker RJ, Porter CA, Patton JC, Van Den Bussche RA: Systematics of bats of the family Phyllostomidae based on RAG2 DNA sequences. Occasional Papers Museum of Texas Tech University 2000, 202:1-16.
  • [42]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9:1657-1659.
  • [43]Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics 1998, 14:817-818.
  • [44]Sánchez R, Serra F, Tárraga J, Medina I, Carbonell J, Pulido L, de María A, Capella-Gutíerrez S, Huerta-Cepas J, Gabaldón T, Dopazo J, Dopazo H: Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucl Acids Res 2011, 39:1-5.
  • [45]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  • [46]Shimodaira H, Hasegawa M: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999, 16:1114-1116.
  • [47]Huelsenbeck JP, Ronquist F: MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
  • [48]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214.
  • [49]Smith MF, Patton JL: Phylogenetic relationships and the radiation of Sigmodontinae rodents in South America: evidence from cytochrome b. J Mamm Evol 1999, 6:89-128.
  • [50]Hoffmann FG, Baker RJ: Comparative phylogeography of short-tailed bats (Carollia: Phyllostomidae). Mol Ecol 2003, 12:3403-3414.
  • [51]Hulva P, Horáček P, Strelkov PP, Benda P: Molecular architecture of Pipistrellus pipistrellus / Pipistrellus pygmaeus complex (Chiroptera: Vespertilionidae): further cryptic species and Mediterranean origin of the divergence. Mol Phylogenet Evol 2004, 32:1023-1035.
  • [52]Martins FM, Templeton AJ, Pavan ACO, Kohlbach BC, Morgante JS: Phylogeography of the common vampire bat (Desmodus rotundus): marked population structure Neotropical Pleistocene vicariance and incongruence between nuclear and mtDNA markers. BMC Evol Biol 2009, 9:294.
  • [53]Smith JD: Systematics of the chiropteran family Mormoopidae. Miscellaneous Publications of the University of Kansas Museum of Natural History 1972, 56:1-132.
  • [54]Skowronski MD, Fenton MB: Model-based automated detection of echolocation calls using the link detector. J Acoust Soc Am 2008, 124:328-336.
  • [55]R Development Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2008. ISBN 3-900051-07-0, URL http://www.R-project.org webcite
  • [56]PASW Ontario Universities Student SPSS Version 18.0 SPSS Inc. Chicago: an IBM Company; 2009.
  • [57]Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evo 1985, 22:160-174.
  • [58]Tavaré S: Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. In Lectures on Mathematics in the Life Sciences. American Mathematical Society; 1986:57-86.
  • [59]Ditchfield AD: The comparative phylogeography of Neotropical mammals: patterns of intraspecific mitochondrial DNA variation among bats contrasted to nonvolant small mammals. Mol Ecol 2000, 9:1307-1318.
  • [60]Rivers NM, Butlin RK, Altringham JD: Genetic population structure of Natterer’s bats explained by mating at swarming sites and philopatry. Mol Ecol 2005, 14:4299-4312.
  • [61]Berthier P, Excoffier L, Ruedi M: Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. Proc. R. Soc. B 2006, 273:3101-3109.
  • [62]Krausz C, McElreavey K: Y Chromosome and male infertility. Front Biosci 1999, 4:e1-e8.
  • [63]Simmons NB: Order Chiroptera. In Mammal Species of the World: a Taxonomic and Geographic Reference. 3rd edition. Edited by Wilson DE, Reeder DM. Baltimore Maryland: Johns Hopkins University Press; 2005:312-529.
  • [64]Gutiérrez EE, Molinari J: Morphometrics and taxonomy of bats of the genus Pteronotus (subgenus Phyllodia) in Venezuela. J Mamm 2008, 89:292-305.
  • [65]Meiklejohn CD, Montooth KL, Rand DM: Positive and negative selection on the mitochondrial genome. Trends Genet 2007, 23:259-263.
  • [66]Rogers JJW: A history of continents in the past three billion years. J Geol 1996, 104:91-107.
  • [67]Vdovin O, Rial JA, Levshin AL, Ritzwoller MH: Group-velocity tomography of South America and the surrounding oceans. Geophys J Int 1999, 136:324-340.
  • [68]Huber O, Foster MN: Conservation priorities for the Guayana shield: 2002 Consensus. Washington DC: Conservation International. Center for Applied Biodiversity Science; 2002.
  • [69]Dávalos LM: The geography of diversification in the mormoopids (Chiroptera: Mormoopidae). Biol J Linn Soc 2006, 88:101-118.
  • [70]Hoskin CJ, Higgie M: Speciation via species interactions: the divergence of mating traits within species. Ecol Lett 2010, 13:409-420.
  • [71]Siemers MB, Beedholm K, Diets C, Dietz I, Ivanova T: Is species identity, sex, age or individual quality conveyed by echolocation call frequency in European horseshoe bats? Acta Chiropterol 2005, 7:259-274.
  • [72]Rundle HD, Nosil P: Ecological Speciation. Ecol Lett 2005, 8:336-352.
  • [73]Felsenstein J: Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution 1981, 35:124-138.
  • [74]Gavrilets S: Fitness landscapes and the origin of species. New Jersey: Princeton University Press. Princeton; 2004.
  • [75]Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P: Magic traits in speciation: “magic” but not rare? Trends Ecol Evol 2011, 26:389-397.
  • [76]Ortiz-Barrientos D, Grealy A, Nosil P: The genetics and ecology of reinforcement: implications for the evolution of prezygotic isolation in sympatry and beyond. Ann NY Acad Sci 2009, 1168:156-182.
  • [77]Elmer KR, Meyer A: Sympatric speciation without borders? Mol Ecol 2010, 19:1991-1993.
  • [78]Crow KD, Munehara H, Bernard G: Sympatric speciation in a genus of marine reef fishes. Mol Ecol 2010, 19:2089-2105.
  • [79]Mayr E: Systematics and the origin of species. New York: Columbia University Press; 1942.
  • [80]Ivanova NV, deWaard JR, Hebert PDN: An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 2006, 6:998-1002.
  • [81]Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN: Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 2007, 7:544-548.
  • [82]Pfunder M, Holzgang O, Frey JE: Development of microarray-based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase 1 vs. cytochrome b as genetic markers. Mol Ecol 2004, 13:1277-1286.
  • [83]Messing J: New M13 vectors for cloning. Method Enzymol 1983, 101:20-78.
  • [84]Hellborg L, Ellegren H: Y chromosome conserved anchored tagged sequences (YCATS) for the analysis of mammalian male-specific DNA. Mol Ecol 2003, 12:283-291.
  文献评价指标  
  下载次数:65次 浏览次数:22次