期刊论文详细信息
BMC Microbiology
Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies
Sebastien Vilain3  Bertrand Garbay3  Marc Bonneu3  Christophe Barthe2  Patricia Costaglioli3  Volker S Brözel1  Caroline Le Senechal2  Marc Crouzet2 
[1] Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0083, South Africa;Bordeaux INP, BPRVS, EA 4135, Bordeaux, F-33000, France;ENSTBB, 146 rue Léo Saignat, case 87, Bordeaux cedex, 33076, France
关键词: Biofilm;    Adhesion;    Adsorption mode;    Glass wool;    Pseudomonas aeruginosa;   
Others  :  1170522
DOI  :  10.1186/s12866-014-0253-z
 received in 2013-11-22, accepted in 2014-09-24,  发布年份 2014
PDF
【 摘 要 】

Background

Bacterial biofilms are predominant in natural ecosystems and constitute a public health threat because of their outstanding resistance to antibacterial treatments and especially to antibiotics. To date, several systems have been developed to grow bacterial biofilms in order to study their phenotypes and the physiology of sessile cells. Although relevant, such systems permit analysis of various aspects of the biofilm state but often after several hours of bacterial growth.

Results

Here we describe a simple and easy-to-use system for growing P. aeruginosa biofilm based on the medium adsorption onto glass wool fibers. This approach which promotes bacterial contact onto the support, makes it possible to obtain in a few minutes a large population of sessile bacteria. Using this growth system, we demonstrated the feasibility of exploring the early stages of biofilm formation by separating by electrophoresis proteins extracted directly from immobilized cells. Moreover, the involvement of protein synthesis in P. aeruginosa attachment is demonstrated.

Conclusions

Our system provides sufficient sessile biomass to perform biochemical and proteomic analyses from the early incubation period, thus paving the way for the molecular analysis of the early stages of colonization that were inaccessible to date.

【 授权许可】

   
2014 Crouzet et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417020250700.pdf 2154KB PDF download
Figure 6. 81KB Image download
Figure 5. 17KB Image download
Figure 4. 32KB Image download
Figure 3. 47KB Image download
Figure 2. 51KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM: Microbial biofilms. Annu Rev Microbiol 1995, 49:711-745.
  • [2]Landini P, Antoniani D, Burgess JG, Nijland R: Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 2010, 86(3):813-823.
  • [3]Stoodley P, Sauer K, Davies DG, Costerton JW: Biofilms as complex differentiated communities. Annu Rev Microbiol 2002, 56:187-209.
  • [4]Vilain S, Cosette P, Zimmerlin I, Dupont JP, Junter GA, Jouenne T: Biofilm proteome: homogeneity or versatility? J Proteome Res 2004, 3(1):132-136.
  • [5]Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O: Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010, 35(4):322-332.
  • [6]Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause of persistent infections. Science 1999, 284(5418):1318-1322.
  • [7]Lewis K: Riddle of biofilm resistance. Antimicrob Agents Chemother 2001, 45(4):999-1007.
  • [8]O¿Toole GA, Gibbs KA, Hager PW, Phibbs PV Jr, Kolter R: The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 2000, 182(2):425-431.
  • [9]Bjarnsholt T, Alhede M, Alhede M, Eickhardt-Sørensen SR, Moser C, Kühl M, Jensen PO, Høiby N: The in vivo biofilm. Trends Microbiol 2013, 21(9):466-474.
  • [10]Zobell CE: The effect of solid surfaces upon bacterial activity. J Bacteriol 1943, 46(1):39-56.
  • [11]Merritt JH, Kadouri DE, O¿Toole GA: Growing and analyzing static biofilms.Curr Protoc Microbiol 2011, 1B.1.1¿1B.1.18. doi:10.1002/9780471729259.mc01b01s22.
  • [12]Vilain S, Brözel VS: Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. J Proteome Res 2006, 5(8):1924-1930.
  • [13]Weiss Nielsen M, Sternberg C, Molin S, Regenberg B: Pseudomonas aeruginosa and Saccharomyces cerevisiae biofilm in flow cells. J Vis Exp 2011, 47:pii: 2383.
  • [14]Revetta RP, Gomez-Alvarez V, Gerke TL, Curioso C, Santo Domingo JW, Ashbolt NJ: Establishment and early succession of bacterial communities in monochloramine-treated drinking water biofilms.FEMS Microbiol Ecol 2013, doi:10.1111/1574-6941.12170.
  • [15]Jouenne T, Vilain S, Cosette P, Junter GA: Proteomics of biofilm bacteria. Curr Proteomics 2004, 1:113-129.
  • [16]Steyn B, Oosthuizen MC, MacDonald R, Theron J, Brözel VS: The use of glass wool as an attachment surface for studying phenotypic changes in Pseudomonas aeruginosa biofilms by two-dimensional gel electrophoresis. Proteomics 2001, 1(7):871-879.
  • [17]Costaglioli P, Barthe C, Claverol S, Brözel VS, Perrot M, Crouzet M, Bonneu M, Garbay B, Vilain S: Evidence for the involvement of the anthranilate degradation pathway in Pseudomonas aeruginosa biofilm formation. Microbiol Open 2012, 1(3):326-339.
  • [18]Aspedon A, Palmer K, Whiteley M: Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. J Bacteriol 2006, 188(7):2721-2725.
  • [19]West SE, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ: Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 1994, 148(1):81-86.
  • [20]Liu SC, Webster DA, Stark BC: An improved method of transformation in Pseudomonads. Biotechnol Tech 1996, 10(9):683-686.
  • [21]O¿Toole GA, Kolter R: Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 1998, 28(3):449-461.
  • [22]Seneviratne CJ, Wang Y, Jin L, Wong SS, Herath TD, Samaranayake LP: Unraveling the resistance of microbial biofilms: has proteomics been helpful? Proteomics 2012, 12(4¿5):651-665.
  • [23]McBain AJ: In vitro biofilm models: an overview. Adv Appl Microbiol 2009, 69:99-132.
  • [24]Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG: Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 2002, 184(4):1140-1154.
  • [25]Dalton HM, Poulsen LK, Halasz P, Angles ML, Goodman AE, Marshall KC: Substratum-induced morphological changes in a marine bacterium and their relevance to biofilm structure. J Bacteriol 1994, 176(22):6900-6906.
  • [26]Vilain S, Cosette P, Hubert M, Lange C, Junter GA, Jouenne T: Comparative proteomic analysis of planktonic and immobilized Pseudomonas aeruginosa cells: a multivariate statistical approach. Anal Biochem 2004, 329(1):120-130.
  • [27]McLoon AL, Guttenplan SB, Kearns DB, Kolter R, Losick R: Tracing the domestication of a biofilm-forming bacterium. J Bacteriol 2011, 193(8):2027-2034.
  • [28]Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T: Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 2003, 48(6):1511-1524.
  • [29]Boks NP, Kaper HJ, Norde W, van der Mei HC, Busscher HJ: Mobile and immobile adhesion of staphylococcal strains to hydrophilic and hydrophobic surfaces. J Colloid Interface Sci 2009, 331(1):60-64.
  • [30]Rice AR, Hamilton MA, Camper AK: Apparent surface associated lag time in growth of primary biofilm cells. Microbial Ecol 2000, 40(1):8-15.
  • [31]Korber DR, Lawrence JR, Caldwell DE: Effect of motility on surface colonization and reproductive success of Pseudomonas fluorescens in dual-dilution continuous culture and batch culture systems. Appl Environ Microbiol 1994, 60(5):1421-1429.
  • [32]Lawrence JR, Caldwell DE: Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments. Microbial Ecol 1987, 14(1):15-27.
  • [33]Walker SL, Redman JA, Elimelech M: Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport. Langmuir 2004, 20(18):7736-7746.
  文献评价指标  
  下载次数:40次 浏览次数:38次