期刊论文详细信息
BMC Musculoskeletal Disorders
Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes
Francisco J Blanco2  Carlos Fernández-López1  Natividad Oreiro1  Tamara Hermida-Gómez1  Emma Muiños-López1  Claudia Cicione1  Silvia Díaz-Prado3 
[1]Rheumatology Division, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain
[2]Osteoarticular and Aging Research Laboratory. Biomedical Research Center, Instituto de Investigación Biomédica de A Coruña (INIBIC), Hospital Materno Infantil Teresa Herrera, C/As Xubias S/N. 15.006, A Coruña, Spain
[3]CIBER-BBN-Cellular Therapy Area, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain
关键词: Human;    Osteoarthritis;    Chondrocyte;    Microarray;    microRNA;   
Others  :  1146007
DOI  :  10.1186/1471-2474-13-144
 received in 2012-02-18, accepted in 2012-07-10,  发布年份 2012
PDF
【 摘 要 】

Background

Osteoarthritis (OA) is a multifactorial disease characterized by destruction of the articular cartilage due to environmental, mechanical and genetic components. The genetics of OA is complex and is not completely understood. Recent works have demonstrated the importance of microRNAs (miRNAs) in cartilage function. MiRNAs are a class of small noncoding RNAs that regulate gene expression and are involved in different cellular process: apoptosis, proliferation, development, glucose and lipid metabolism. The aim of this study was to identify and characterize the expression profile of miRNAs in normal and OA chondrocytes and to determine their role in the OA.

Methods

Chondrocytes were moved to aggregate culture and evaluated using histological and qPCR techniques. miRNAs were isolated and analyzed using the Agilent Human miRNA Microarray.

Results

Of the 723 miRNAs analyzed, 7 miRNAs showed a statistically significant differential expression. Amongst these 7 human miRNAs, 1 was up-regulated in OA chondrocytes (hsa-miR-483-5p) and 6 were up-regulated in normal chondrocytes (hsa-miR-149*, hsa-miR-582-3p, hsa-miR-1227, hsa-miR-634, hsa-miR-576-5p and hsa-miR-641). These profiling results were validated by the detection of some selected miRNAs by qPCR. In silico analyses predicted that key molecular pathways potentially altered by the miRNAs differentially expressed in normal and OA chondrocytes include TGF-beta, Wnt, Erb and mTOR signalling; all of them implicated in the development, maintenance and destruction of articular cartilage.

Conclusions

We have identified 7 miRNAs differentially expressed in OA and normal chondrocytes. Our potential miRNA target predictions and the signalling cascades altered by the differentially expressed miRNAs supports the potential involvement of the detected miRNAs in OA pathology. Due to the importance of miRNA in mediating the translation of target mRNA into protein, the identification of these miRNAs differentially expressed in normal and OA chondrocyte micropellets could have important diagnostic and therapeutic potential. Further studies are needed to know the function of these miRNAs, including the search of their target mRNA genes, which could lead to the development of novel therapeutic strategies for the OA treatment.

【 授权许可】

   
2012 Diaz-Prado et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150403084046332.pdf 2010KB PDF download
Figure 5 . 46KB Image download
Figure 4 . 47KB Image download
Figure 3 . 108KB Image download
Figure 2 . 85KB Image download
Figure 1 . 70KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

【 参考文献 】
  • [1]Carossino AM, Recenti R, Carossino R, Piscitelli E, Gozzini A, Martineti V, Mavilia C, Franchi A, Danielli D, Aglietti P, Ciardullo A, Galli G, Tognarini I, Moggi Pignone A, Cagnoni M, Brandi ML: Methodological models for in vitro amplification and maintenance of human articular chondrocytes from elderly patients. Biogerontology 2007, 8:483-498.
  • [2]Scharstuhl A, Schewe B, Benz K, Gaissmaier C, Bühring HJ, Stoop R: Chondrogenic potential of human adult mesenchymal stem cells in independent of age or osteoarthritis etiology. Stem Cells 2007, 25:3244-3251.
  • [3]Aigner T, Kurz B, Fukui N, Sandell L: Roles of chondrocytes in the pathogenesis of osteoarthritis. Curr Opin Rheumatol 2002, 14:578-584.
  • [4]Sun BK, Tsao H: Small RNAs in development and disease. J Am Acad Dermatol 2008, 59:725-737.
  • [5]Si Y, Jin Y: MicroRNA in cell differentiation and development. Sci China C Life Sci 2009, 52:205-211.
  • [6]Li W, Ruan K: MicroRNA detection by microarray. Anal Bioanal Chem 2009, 394:1117-1124.
  • [7]Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EKL: Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumathoid arthritis patients. Arthritis Res Ther 2008, 10:R101. BioMed Central Full Text
  • [8]Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. Nucleic Acids Res 2008, 36:D149-153.
  • [9]Jones SW, Watkins G, Le Good N, Roberts S, Murphy CL, Brockbank SM, Needham MR, Read SJ, Newham P: The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthr Cartilage 2009, 17:464-472.
  • [10]Lin EA, Kong L, Bai X, Luan Y, Liu CJ: miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem 2009, 284:11326-11335.
  • [11]Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, Kato Y, Sato T, Lotz MK, Asahara H: MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates IL-1 responses. Arthritis Rheum 2009, 60:2723-2730.
  • [12]Yamasaki K, Nakasa T, Miyaki S, Ishikawa M, Deie M, Adachi N, Yasunaga Y, Asahara H, Ochi M: Expression of microRNA-146 in osteoarthritis cartilage. Arthritis Rheum 2009, 60:1035-1041.
  • [13]Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T: The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 2006, 580:4214-4217.
  • [14]Tardif G, Hum D, Pelletier J-P, Duval N, Martel-Pelletier J: Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord 2009, 10:148. BioMed Central Full Text
  • [15]Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A: Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One 2008, 3:e3740.
  • [16]Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E, Merkenschlager M, Kronenberg HM: Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci USA 2008, 105:1949-1954.
  • [17]Bates DJ, Liang R, Li N, Wang E: The impact of noncoding RNA on the biochemical and molecular mechanisms of aging. Biochim Biophys Acta 2009, 1790:970-979.
  • [18]Sarkar D, Parkin R, Wyman S, Bendoraite A, Sather C, Delrow J, Godwin AK, Drescher C, Huber W, Gentleman R, Tewari M: Quality assessment and data analysis for microRNA expression arrays. Nucleic Acids Res 2009, 37:e17.
  • [19]Liang Y, Ridzon D, Wong L, Chen C: Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007, 8:166. BioMed Central Full Text
  • [20]Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR: MicroRNA expression profiles classify human cancers. Nature 2005, 435:834-838.
  • [21]Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y: Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int 2009, 29:749-754.
  • [22]Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6:857-866.
  • [23]Cho WC: MiroRNAs: Potential biomarkers for cancer diagnosis, prognosis and targets for theraphy. Int J Biochem Cell Biol 2010, 8:1273-1281.
  • [24]Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D: Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 2008, 58:1001-1009.
  • [25]Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, Asahara M: Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 2008, 58:1284-1292.
  • [26]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39:D152-157.
  • [27]Blanco FJ, Guitian R, Vázquez-Martul E, de Toro FJ, Galdo F: Osteoarthritis chondrocytes death by apoptosis: A possible pathway for OA pathology. Arthritis Rheum 1998, 41:284-289.
  • [28]Imbeaud S, Graudens E, Boulanger V, Barlet X, Zaborski P, Eveno E, Mueller O, Schroeder A, Auffray C: Towards standarization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 2005, 33:e56.
  • [29]Roche Applied Science: [database on the Internet]. Universal ProbeLibrary. Universal ProbeLibrary interest site. Assay Design Center/ProbeFInder. Homo sapiens (Human). Available from http://www.roche-applied-science.com webcite
  • [30]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using Real-Time quantitative PCR and the 2-ΔΔCt method. Methods 2001, 25:402-408.
  • [31]Sambrook J, Maniatis T, Fritsch EF: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York; 1989.
  • [32]Alexiou P, Vergoulis T, Gleditzsch M, Prekas G, Dalamagas T, Megraw M, Grosse I, Sellis T, Hatzigeorgiou AG: miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Res 2010, 38:D137-D141.
  • [33]- miRanda[algorithm on the Internet]. Available from http://www.microrna.org webcite
  • [34]miRGen[database on the Internet]. Available from http://www.diana.pcbi.upenn.edu/cgi-bin/miRGen/v3/Targets.cgi webcite
  • [35]Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell 2003, 115:787-798.
  • [36]TargetScan Human resource[algorithm on the Internet]. Available from http://www.targetscan.org
  • [37]Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG: DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 2009, 25:1991-1993.
  • [38]DIANA-miRPath[web-based computational tool]. Available from http://diana.cslab.ece.ntua.gr/pathways/ webcite
  • [39]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
  • [40]Zuntini M, Salvatore M, Pedrini E, Parra A, Sgariglia F, Magrelli A, Taruscio D, Sangiorgi L: MicroRNA profiling of multiple osteochondromas: identification of disease-specific and normal cartilage signatures. Clin Genet 2010, 78:507-516.
  • [41]Felson DT: Epidemiology of knee and hip osteoartritis. Epidemiol Rev 1988, 10:1-28.
  • [42]Fuentes-Boquete IM, Arufe Gonda MC, Díaz Prado SM, Hermida Gómez T, de Toro Santos FJ, Blanco FJ: Cell and tissue transplant strategies for joint lesions. The Open Transplantation Journal 2008, 2:21-28.
  • [43]Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, Takada S, Lotz MK, Ueno-Kudo H, Asahara H: MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 2010, 24:1173-1185.
  • [44]Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR, Haqqi TM: MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum 2010, 62:1361-1371.
  • [45]Murata K, Yoshitomi H, Tanida S, Ishikawa M, Nishitani K, Ito H, Nakamura T: Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 2010, 12:R86. BioMed Central Full Text
  • [46]Araldi E, Schipani E: MicroRNA-140 and the silencing of osteoarthritis. Genes Dev 2010, 24:1075-1080.
  • [47]Abouheif MM, Nakasa T, Shibuya H, Niimoto T, Kongcharoensombat W, Ochi M: Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro. Rheumatology (Oxford) 2010, 49:2054-2060.
  • [48]Dunn W, DuRaine G, Reddi AH: Profiling microRNA expression in bovine articular cartilage and implications for machanotransduction. Arthritis Rheum 2009, 60:2333-2339.
  • [49]Soon PS, Tacon LJ, Gill AJ, Bambach CP, Sywak MS, Campbell PR, Yeh MW, Wong SG, Clifton-Bligh RJ, Robinson BG, Sidhu SB: miR-195 and miR-483-5p identified as predictors of poor prognosis in adrenocortical cancer. Clin Cancer Res 2009, 15:7684-7692.
  • [50]Patterson EE, Holloway AK, Weng J, Fojo T, Kebebew E: MicroRNA profiling of adrenocortical tumors reveals miR-483 as a marker of malignancy. Cancer 2011, 117:1630-1639.
  • [51]Blom AB, Brockbank SM, van Lent PL, van Beuningen HM, Geurts J, Takahashi N, van der Kraan PM, van de Loo FA, Schreurs BW, Clements K, Newham P, van den Berg WB: Involvement of the Wnt signalling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signalling protein. Arthritis Rheum 2009, 60:501-512.
  • [52]Lodewyckx L, Lories RJ: WNT Signalling in osteoarthritis and osteoporosis: what is the biological significance for the clinician? Curr Rheumatol Rep 2009, 11:23-30.
  • [53]Blom AB, van Lent PL, van der Kraan PM, van den Berg WB: To seek shelter from the WNT in osteoarthritis? WNT-signaling as a targer for osteoarthritis therapy. Curr Drug Targets 2010, 11:620-629.
  • [54]Corr M: Wnt-beta-catenin signalling in the pathogenesis of osteoarthritis. Nat Clin Pract Rheumatol 2008, 4:550-556.
  • [55]Velasco J, Zarrabeitia MT, Prieto JR, Perez-Castrillon JL, Perez-Aguilar MD, Perez-Nuñez MI, Sañudo C, Hernandez-Elena J, Calvo I, Ortiz F, Gonzalez-Macias J, Riancho JA: Wnt pathway genes in osteoporosis and osteoartritis: differential expresión and genetic association study. Osteoporos Int 2010, 21:109-118.
  • [56]Qureshi HY, Ahmad R, Sylvester J, Zafarullah M: Requirement of phosphatidylinositol 3-kinase/Akt signaling pathway for regulation of tissue inhibitor of metalloproteinases-3 gene expresión by TGF-beta in human chondrocytes. Cell Signal 2007, 19:1643-1651.
  • [57]Van der Kraan PM, Blaney Davidson EN, Blom A, Van den Berg WB: TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. Osteoarthr Cartil 2009, 17:1539-1545.
  • [58]Duraine GD, Chan SM, Reddi AH: Effects of TGF-ß1 on alternative splicing of superficial zone protein in articular cartilage cultures. Osteoarthr Cartil 2011, 19:103-110.
  文献评价指标  
  下载次数:24次 浏览次数:15次