期刊论文详细信息
BMC Genetics
The frequency of spontaneous triploidy in farmed Atlantic salmon produced in Norway during the period 2007–2014
Per G Fjelldal1  Tom J Hansen1  H Craig Morton1  Øystein Skaala1  Vidar Wennevik1  Anne G E Sørvik1  Geir Dahle1  Abdullah S Madhun1  Kevin A Glover1 
[1] Institute of Marine Research, Bergen, 5817, Nordnes, Norway
关键词: genetic;    Escapees;    Aquaculture;    Breeding;    Microsatellite;    Autotriploid;    Autopolyploidy;   
Others  :  1178839
DOI  :  10.1186/s12863-015-0193-0
 received in 2014-11-28, accepted in 2015-03-25,  发布年份 2015
PDF
【 摘 要 】

Background

Spontaneous triploidy has been reported in a number of fish species, and is often linked with in vivo or in vitro ageing of eggs post ovulation. Here, we provide the first investigation into the frequency of spontaneous triploidy in farmed Atlantic salmon by analysing more than 4000 fish from 55 farms, and approximately 1000 recaptured escapees, all sampled in the period 2007–2014. In addition, we compare microsatellite genotyping against flow cytometry and red blood cell diameter in a set of 45 putatively diploid and 45 putatively triploid Atlantic salmon.

Results

The three methods implemented for ploidy determination gave consistent results, thus validating the methods used here. Overall, 2.0% spontaneous triploids were observed in salmon sampled on farms. The frequency of spontaneous triploids varied greatly among sea cages (0-28%), but they were observed in similar frequencies among the three primary breeding companies (1.8-2.4%). Spontaneous triploids were observed in all farming regions in Norway, and in all years sampled. Spontaneous triploids were also observed among the escapees recaptured in both the marine environment and in rivers.

Conclusions

Spontaneous triploidy in commercially produced Atlantic salmon is likely to be a result of the practices employed by the industry. For logistical reasons, there is sometimes a pause of hours, and in some cases overnight, between killing the female broodfish, removal of her eggs, and fertilization. This gives the eggs time to age post ovulation, and increases the probability of duplication of the maternal chromosome set by inhibition of the second polar body release after normal meiosis II in the oocyte.

【 授权许可】

   
2015 Glover et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150505012244826.pdf 1700KB PDF download
Figure 2. 91KB Image download
Figure 1. 124KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Gjedrem T: Genetic improvement of cold-water fish species. Aquac Res 2000, 31(1):25-33.
  • [2]Gjedrem T: The first family-based breeding program in aquaculture. Rev Aquac 2010, 2(1):2-15.
  • [3]Skaala O, Hoyheim B, Glover K, Dahle G: Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): allelic diversity and identification of individuals. Aquaculture 2004, 240(1–4):131-43.
  • [4]Youngson AF, Martin SAM, Jordan WC, Verspoor E: Genetic protein variation in Atlantic salmon in Scotland - comparisons of wild and farmed fish. Aquaculture 1991, 98(1–3):231-42.
  • [5]Powell J, White I, Guy D, Brotherstone S: Genetic parameters of production traits in Atlantic salmon (Salmo salar). Aquaculture 2008, 274(2–4):225-31.
  • [6]Quinton CD, McMillan I, Glebe BD: Development of an Atlantic salmon (Salmo salar) genetic improvement program: genetic parameters of harvest body weight and carcass quality traits estimated with animal models. Aquaculture 2005, 247(1–4):211-7.
  • [7]Withler RE, Supernault KJ, Miller KM: Genetic variation within and among domesticated Atlantic salmon broodstocks in British Columbia, Canada. Anim Genet 2005, 36(1):43-50.
  • [8]Taylor RS, Wynne JW, Kube PD, Elliott NG: Genetic variation of resistance to amoebic gill disease in Atlantic salmon (Salmo salar) assessed in a challenge system. Aquaculture 2007, 272:S94-9.
  • [9]Norris AT, Bradley DG, Cunningham EP: Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture 1999, 180(3–4):247-64.
  • [10]Saegrov H, Hindar K, Kalas S, Lura H: Escaped farmed Atlantic salmon replace the original salmon stock in the River Vosso, western Norway. Ices J Marine Sci 1997, 54(6):1166-72.
  • [11]Fleming IA, Hindar K, Mjolnerod IB, Jonsson B, Balstad T, Lamberg A: Lifetime success and interactions of farm salmon invading a native population. Proc R Soc Lond Ser B-Biol Sci 2000, 267(1452):1517-23.
  • [12]Skaala O, Wennevik V, Glover KA: Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees. Ices J Marine Sci 2006, 63(7):1224-33.
  • [13]Glover KA, Quintela M, Wennevik V, Besnier F, Sørvik AGE, Skaala O: Three decades of farmed escapees in the wild: a spatio-temporal analysis of population genetic structure throughout Norway. Plos One 2012, 7(8):e43129.
  • [14]Glover KA, Pertoldi C, Besnier F, Wennevik V, Kent M, Skaala Ø: Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs. BMC Genet 2013, 14:4.
  • [15]Clifford SL, McGinnity P, Ferguson A: Genetic changes in Atlantic salmon (Salmo salar) populations of northwest Irish rivers resulting from escapes of adult farm salmon. Can J Fish Aquat Sci 1998, 55(2):358-63.
  • [16]Crozier WW: Evidence of genetic interaction between escaped farmed salmon and wild Atlantic salmon (Salmo salar L) in a Northern Irish river. Aquaculture 1993, 113(1–2):19-29.
  • [17]Glover KA, Skilbrei OT, Skaala O: Genetic assignment identifies farm of origin for Atlantic salmon Salmo salar escapees in a Norwegian fjord. Ices J Marine Sci 2008, 65(6):912-20.
  • [18]Glover KA, Dahle G, Westgaard JI, Johansen T, Knutsen H, Jorstad KE: Genetic diversity within and among Atlantic cod (Gadus morhua) farmed in marine cages: a proof-of-concept study for the identification of escapees. Anim Genet 2010, 41(5):515-22.
  • [19]Glover KA. Genetic characterisation of farmed rainbow trout in Norway: intra- and inter-strain variation reveals potential for identification of escapees. BMC Genet. 2008;9:19.
  • [20]Glover KA, Hansen MM, Skaala O: Identifying the source of farmed escaped Atlantic salmon (Salmo salar): Bayesian clustering analysis increases accuracy of assignment. Aquaculture 2009, 290(1–2):37-46.
  • [21]Glover KA, Hansen MM, Lien S, Als TD, Hoyheim B, Skaala O. A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment. BMC Genet. 2010;11(2).
  • [22]Glover KA: Forensic identification of fish farm escapees: the Norwegian experience. Aquaculture Environ Interact 2010, 1:1-10.
  • [23]Glover KA, Skaala O, Sovik AGE, Helle TA: Genetic differentiation among Atlantic salmon reared in sea-cages reveals a non-random distribution of genetic material from a breeding programme to commercial production. Aquac Res 2011, 42(9):1323-31.
  • [24]Zhang Z, Glover KA, Wennevik V, Svåsand T, Sørvik AGE, Fiske P, et al.: Genetic analysis of Atlantic salmon captured in a netting station reveals multiple escapement events from commercial fish farms. Fish Manag Ecol 2013, 20(1):42-51.
  • [25]Madhun AS, Karlsbakk E, Ischsen CH, Omdal LM, Sørvik AGE, Skaala Ø, et al.: Potential disease interaction reinforced: double-virus infected escaped farmed Atlantic salmon, Salmo salar L., recaptured in a nearby river. J Fish Dis 2015, 38:209-19.
  • [26]Taylor JF, Bozzolla P, Frenzl B, Matthew C, Hunter D, Migaud H: Triploid Atlantic salmon growth is negatively affected by communal ploidy rearing during seawater grow-out in tanks. Aquaculture 2014, 432:163-74.
  • [27]Frenzl B, Migaud H, Fjelldal PG, Shinn AP, Taylor JF, Richards RH, et al.: Triploid and diploid Atlantic salmon show similar susceptibility to infection with salmon lice Lepeophtheirus salmonis. Pest Manag Sci 2014, 70(6):982-8.
  • [28]Leclercq E, Taylor JF, Fison D, Fjelldal PG, Diez-Padrisa M, Hansen T, et al.: Comparative seawater performance and deformity prevalence in out-of-season diploid and triploid Atlantic salmon (Salmo salar) post-smolts. Comp Biochem Physiol A-Mol Integr Physiol 2011, 158(1):116-25.
  • [29]Fjelldal PG, Hansen T: Vertebral deformities in triploid Atlantic salmon (Salmo salar L.) underyearling smolts. Aquaculture 2010, 309(1–4):131-6.
  • [30]Leggatt RA, Iwama GK: Occurrence of polyploidy in the fishes. Rev Fish Biol Fish 2003, 13(3):237-46.
  • [31]Aegerter S, Jalabert B: Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout, Oncorhynchus mykiss. Aquaculture 2004, 231(1–4):59-71.
  • [32]Flajshans M, Kvasnicka P, Rab P: Genetic studies in tench (Tinca tinca) - high incidence spontaneous triploidy. Aquaculture 1993, 110(3–4):243-8.
  • [33]Flajshans M, Kohlmann K, Rab P: Autotriploid tench Tinca tinca (L.) larvae obtained by fertilization of eggs previously subjected to postovulatory ageing in vitro and in vivo. J Fish Biol 2007, 71(3):868-76.
  • [34]Flajshans M, Gela D, Kocour M, Buchtova H, Rodina M, Psenicka M, et al.: A review on the potential of triploid tench for aquaculture. Rev Fish Biol Fish 2010, 20(3):317-29.
  • [35]Nomura K, Takeda Y, Unuma T, Morishima K, Tanaka H, Arai K, et al.: Post-ovulatory oocyte aging induces spontaneous occurrence of polyploids and mosaics in artificial fertilization of Japanese eel, Anguilla japonica. Aquaculture 2013, 404:15-21.
  • [36]Devlin RH, Sakhrani D, Biagi CA, Eom KW: Occurrence of incomplete paternal-chromosome retention in GH-transgenic coho salmon being assessed for reproductive containment by pressure-shock-induced triploidy. Aquaculture 2010, 304(1–4):66-78.
  • [37]Varkonyi E, Bercsenyi M, Ozouf-Costaz C, Billard R: Chromosomal and morphological abnormalities caused by oocyte aging in Silurus glanis. J Fish Biol 1998, 52(5):899-906.
  • [38]Havelka M, Hulak M, Rodina M, Flajshans M: First evidence of autotriploidization in sterlet (Acipenser ruthenus). J Appl Genet 2013, 54(2):201-7.
  • [39]Havelka M, Hulak M, Rab P, Rabova M, Lieckfeldt D, Ludwig A, et al. Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet. 2014;15:5.
  • [40]Solberg MF, Glover KA, Nilsen F, Skaala Ø. Does Domestication Cause Changes in Growth Reaction Norms? A Study of Farmed, Wild and Hybrid Atlantic Salmon Families Exposed to Environmental Stress. Plos One. 2013;8(1):e54469.
  • [41]Ozerov MY, Lumme J, Pakk P, Rintamaki P, Zietara MS, Barskaya Y, et al.: High Gyrodactylus salaris infection rate in triploid Atlantic salmon Salmo salar. Dis Aquat Org 2010, 91(2):129-36.
  • [42]Haaland ØA, Glover KA, Seliussen BB, Skaug HJ: Genotyping errors in a calibrated DNA -register: implications for identification of individuals. BMC Genet 2011, 12:36. BioMed Central Full Text
  • [43]Glover KA, Haag T, Oien N, Walloe L, Lindblom L, Seliussen BB, et al.: The Norwegian minke whale DNA register: a database monitoring commercial harvest and trade of whale products. Fish Fish 2012, 13:313-32.
  • [44]Paterson S, Piertney SB, Knox D, Gilbey J, Verspoor E: Characterization and PCR multiplexing of novel highly variable tetranucleotide Atlantic salmon (Salmo salar L.) microsatellites. Mol Ecol Notes 2004, 4(2):160-2.
  • [45]O’Reilly PT, Hamilton LC, McConnell SK, Wright JM: Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can J Fisheries and Aquatic Sci 1996, 53(10):2292-8.
  • [46]King TL, Eackles MS, Letcher BH: Microsatellite DNA markers for the study of Atlantic salmon (Salmo salar) kinship, population structure, and mixed-fishery analyses. Mol Ecol Notes 2005, 5(1):130-2.
  • [47]McConnell SK, Oreilly P, Hamilton L, Wright JN, Bentzen P: Polymorphic microsatellite loci from Atlantic salmon (Salmo salar) - genetic differentiation of North-American and European populations. Can J Fish Aquat Sci 1995, 52(9):1863-72.
  • [48]Sanchez JA, Clabby C, Ramos D, Blanco G, Flavin F, Vazquez E, et al.: Protein and microsatellite single locus variability in Salmo salar L (Atlantic salmon). Heredity 1996, 77:423-32.
  • [49]Slettan A, Olsaker I, Lie O: Atlantic salmon, Salmo salar, microsatellites at the SsOSL25, SsOSL85, SsOSL311, SsOSL417 loci. Anim Genet 1995, 26(4):281-2.
  • [50]Grimholt U, Drablos F, Jorgensen SM, Hoyheim B, Stet RJM: The major histocompatibility class I locus in Atlantic salmon (Salmo salar L.): polymorphism, linkage analysis and protein modelling. Immunogenetics 2002, 54(8):570-81.
  • [51]Stet RJM, de Vries B, Mudde K, Hermsen T, van Heerwaarden J, Shum BP, et al.: Unique haplotypes of co-segregating major histocompatibility class II A and class II B alleles in Atlantic salmon (Salmo salar) give rise to diverse class II genotypes. Immunogenetics 2002, 54(5):320-31.
  • [52]Hernandez-Urcera J, Vera M, Magadan S, Pino-Querido A, Cal RM, Martinez P: Development and validation of a molecular tool for assessing triploidy in turbot (Scophthalmus maximus). Aquaculture 2012, 330:179-84.
  • [53]Darvill B, Lepais O, Woodall LC, Goulson D: Triploid bumblebees indicate a direct cost of inbreeding in fragmented populations. Mol Ecol 2012, 21(16):3988-95.
  • [54]Liebert AE, Johnson RN, Switz GT, Starks PT: Triploid females and diploid males: underreported phenomena in Polistes wasps? Insect Soc 2004, 51(3):205-11.
  • [55]Garner SR, Madison BN, Bernier NJ, Neff BD: Juvenile growth and aggression in diploid and triploid Chinook salmon Oncorhynchus tshawytscha (Walbaum). J Fish Biol 2008, 73(1):169-85.
  • [56]Skaala Ø, Glover Kevin A, Barlaup Bjørn T, Svåsand T, Besnier F, Hansen Michael M, et al.: Performance of farmed, hybrid, and wild Atlantic salmon (Salmo salar) families in a natural river environment. Can J Fish Aquat Sci 2012, 69(12):1994-2006.
  • [57]Solberg MF, Zhang ZW, Nilsen F, Glover KA. Growth reaction norms of domesticated, wild and hybrid Atlantic salmon families in response to differing social and physical environments. Bmc Evolutionary Biology. 2013;13:234.
  • [58]Solberg MF, Zhang Z, Glover KA: Are farmed salmon more prone to risk than wild salmon?Susceptibility of juvenile farm, hybrid and wild Atlanticsalmon Salmo salar L. to an artificial predator. Appl Anim Behav Sci 2015, 162:67-80.
  • [59]Jakovlic I, Gui J-F: Recent invasion and low level of divergence between diploid and triploid forms of Carassius auratus complex in Croatia. Genetica 2011, 139(6):789-804.
  • [60]Thorgaard GH, Gall GAE: Adult triploids in a rainbow trout family. Genetics 1979, 93(4):961-73.
  • [61]Cherfas NB, Gomelsky B, Ben-Dom N, Hulata G: Evidence for the heritable nature of spontaneous diploidization in common carp Cyprinus carpio L. eggs. Aquac Res 1995, 26:289-92.
  • [62]Schreier AD, May B, Gille DA: Incidence of spontaneous autopolyploidy in cultured populations of white sturgeon, Acipenser transmontanus. Aquaculture 2013, 416:141-5.
  • [63]Yamazaki F: Chromosomal changes in salmonids. Changes in chromosome number and morphology due to over-ripening of eggs and irradiation. Can Trans Fisheries Aquatic Sci 1983, 4962:1-22.
  • [64]Clifford SL, McGinnity P, Ferguson A: Genetic changes in an Atlantic salmon population resulting from escaped juvenile farm salmon. J Fish Biol 1998, 52(1):118-27.
  • [65]Fjelldal PG, Wennevik V, Fleming IA, Hansen T, Glover KA: Triploid (sterile) farmed Atlantic salmon males attempt to spawn with wild females. Aquaculture Environ Interact 2014, 5(2):155-62.
  • [66]Cotter D, O’Donovan V, O’Maoileidigh N, Rogan G, Roche N, Wilkins NP: An evaluation of the use of triploid Atlantic salmon (Salmo salar L.) in minimising the impact of escaped farmed salmon on wild populations. Aquaculture 2000, 186(1–2):61-75.
  • [67]Skilbrei OT, Heino M, Svåsand T. Using simulated escape events to assess the annual numbers and destinies of escaped farmed Atlantic salmon of different life stages, from farms sites in Norway. Ices J Marine Sci. 2014, doi:10.1093/icesjms/fsu133.
  文献评价指标  
  下载次数:44次 浏览次数:32次