期刊论文详细信息
BMC Evolutionary Biology
Explosive diversification following a benthic to pelagic shift in freshwater fishes
C Darrin Hulsey2  James A Fordyce2  Andrew M Simons1  Phillip R Hollingsworth2 
[1] Department of Fisheries, Wildlife, and Conservation Biology & Bell Museum of Natural History, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA;Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996, USA
关键词: Radiation;    Open adaptive zone;    Divergence times;    Cyprinidae;   
Others  :  858183
DOI  :  10.1186/1471-2148-13-272
 received in 2013-08-01, accepted in 2013-12-11,  发布年份 2013
PDF
【 摘 要 】

Background

Interspecific divergence along a benthic to pelagic habitat axis is ubiquitous in freshwater fishes inhabiting lentic environments. In this study, we examined the influence of this habitat axis on the macroevolution of a diverse, lotic radiation using mtDNA and nDNA phylogenies for eastern North America’s most species-rich freshwater fish clade, the open posterior myodome (OPM) cyprinids. We used ancestral state reconstruction to identify the earliest benthic to pelagic transition in this group and generated fossil-calibrated estimates of when this shift occurred. This transition could have represented evolution into a novel adaptive zone, and therefore, we tested for a period of accelerated lineage accumulation after this historical habitat shift.

Results

Ancestral state reconstructions inferred a similar and concordant region of our mtDNA and nDNA based gene trees as representing the shift from benthic to pelagic habitats in the OPM clade. Two independent tests conducted on each gene tree suggested an increased diversification rate after this inferred habitat transition. Furthermore, lineage through time analyses indicated rapid early cladogenesis in the clade arising after the benthic to pelagic shift.

Conclusions

A burst of diversification followed the earliest benthic to pelagic transition during the radiation of OPM cyprinids in eastern North America. As such, the benthic/pelagic habitat axis has likely influenced the generation of biodiversity across disparate freshwater ecosystems.

【 授权许可】

   
2013 Hollingsworth et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723094410993.pdf 1865KB PDF download
128KB Image download
81KB Image download
204KB Image download
157KB Image download
【 图 表 】

【 参考文献 】
  • [1]Robinson BW, Wilson DS: Character release and displacement in fishes: a neglected literature. Am Nat 1994, 144:596-627.
  • [2]Willacker JJ, von Hippel FA, Wilton PR, Walton KM: Classification of threespine stickleback along the benthic-limnetic axis. Biol J Linn Soc 2010, 101:595-608.
  • [3]Hulsey CD, Roberts RJ, Loh YHE, Rupp MF, Streelman JT: Lake Malawi cichlid evolution along a benthic/limnetic axis. Ecol Evol 2013, 3:2262-2272.
  • [4]Skúlason S, Noakes DLG, Snorrason SS: Ontogeny of trophic morphology in four sympatric morphs of arctic charr Salvelinus alpinus in thingvallavatn, Iceland. Biol J Linn Soc 1989, 38:281-301.
  • [5]Schluter D: Adaptive radiation in sticklebacks: size, shape, and habitat use efficiency. Ecology 1993, 74:699-709.
  • [6]Svanbäck R, Eklöv P: Morphology dependent foraging efficiency in perch: a trade-off for ecological specialization? Oikos 2003, 102:273-284.
  • [7]Meyer A: Ecological and evolutionary consequences of the trophic polymorphism in Cichlasoma citrinellum (Pisces: Cichlidae). Biol J Linn Soc 1990, 39:279-299.
  • [8]Mayden RL: Phylogenetic studies of north american minnows, with emphasis on the genus Cyprinella (teleostei: cypriniformes). Misc Pub Univ Kans Mus Nat Hist 1989, 80:1-189.
  • [9]Simons AM, Berendzen PB, Mayden RL: Molecular systematics of North American phoxinin genera (Actinopterygii: cyprinidae) inferred from mitochondrial 12S and 16S ribosomal RNA sequences. Zool J Linn Soc 2003, 139:63-80.
  • [10]Bufalino AP, Mayden RL: Phylogenetic evaluation of North American leuciscidae (Actinopterygii: cypriniformes: cyprinoidea) as inferred from analyses of mitochondrial and nuclear DNA sequences. Syst Biodivers 2010, 8:493-505.
  • [11]Houston DD, Shiozawa DK, Riddle BR: Phylogenetic relationships of the western North American cyprinid genus Richardsonius, with an overview of phylogeographic structure. Mol Phylogenet Evol 2010, 55:259-273.
  • [12]Hollingsworth PR Jr, Hulsey CD: Reconciling gene trees of eastern North American minnows. Mol Phylogenet Evol 2011, 61:149-156.
  • [13]Page LM, Burr BM: Peterson field guide to freshwater fishes. 2nd edition. Boston: Houghton Mifflin; 2011.
  • [14]Baker JA, Ross ST: Spatial and temporal resource utilization by southeastern cyprinids. Copeia 1981, 1981:178-189.
  • [15]Gorman OT: The dynamics of habitat use in a guild of Ozark minnows. Ecol Monogr 1988, 58:1-18.
  • [16]Gorman OT: An experimental study of habitat use in an assemblage of Ozark minnows. Ecology 1988, 69:1239-1250.
  • [17]Simpson GG: The major features of evolution. New York: Columbia University Press; 1953.
  • [18]Schluter D: The ecology of adaptive radiations. Oxford: Oxford University Press; 2000.
  • [19]Losos JB: Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat 2010, 175:623-639.
  • [20]Hulsey CD, Hollingsworth PR Jr: Do constructional constraints influence cyprinid (Cyprinidae: leuciscinae) craniofacial coevolution? Biol J Linn Soc 2011, 103:136-146.
  • [21]Glor RE: Phylogenetic insights on adaptive radiation. Annu Rev Ecol Evol Syst 2010, 41:251-270.
  • [22]Harmon LJ, Melville J, Larson A, Losos JB: The role of geography and ecological opportunity in the diversification of day geckos (Phelsuma). Syst Biol 2008, 57:562-573.
  • [23]Rabosky DL, Lovette IJ: Density-dependent diversification in North American wood warblers. Proc R Soc B 2008, 275:2363-2371.
  • [24]Dumont ER, Dávalos LM, Goldberg A, Santana SE, Rex K, Voigt CC: Morphological innovation, diversification, and invasion of a new adaptive zone. Proc R Soc B 2012, 279:1797-1805.
  • [25]Fordyce JA: Host shifts and evolutionary radiations of butterflies. Proc R Soc B 2010, 277:3735-3743.
  • [26]Morlon H, Kemps BD, Plotkin JB, Brisson D: Explosive radiation of a bacterial species group. Evolution 2012, 66:2577-2586.
  • [27]Day JJ, Cotton JA, Barraclough TG: Tempo and mode of diversification of lake Tanganyika cichlid fishes. PLoS One 2008, 3:e1730.
  • [28]Hulsey CD, Hollingsworth PR Jr, Fordyce JA: Temporal diversification of Central American cichlids. BMC Evol Biol 2010, 10:279.
  • [29]Day JJ, Peart CR, Brown KJ, Friel JP, Bills R, Moritz T: Continental diversification of an African catfish radiation (Mochokidae: Synodontis). Syst Biol 2013, 62:351-365.
  • [30]Near TJ, Bossu CM, Bradburd GS, Carlson RL, Harrington RC, Hollingsworth PR Jr, Keck BP, Etnier DA: Phylogeny and temporal diversification of darters (Percidae: etheostomatinae). Syst Biol 2011, 60:565-595.
  • [31]Knight RR, Gregory MB, Wales AK: Relating streamflow characteristics to specialized insectivores in the Tennessee river valley: a regional approach. Ecohydrol 2008, 1:394-407.
  • [32]Barraclough TG, Harvey PH, Nee S: Sexual selection and taxonomic diversity in passerine birds. Proc R Soc B 1995, 259:211-215.
  • [33]Kazancıoğlu E, Near TJ, Hanel R, Wainwright PC: Influence of sexual selection and feeding functional morphology on diversification rate of parrotfishes (Scaridae). Proc R Soc B 2009, 276:3439-3446.
  • [34]Wagner CE, Harmon LJ, Seehausen O: Ecological opportunity and sexual selection together predict adaptive radiation. Nature 2012, 487:366-369.
  • [35]Froese R, Pauly D: FishBase 2000: concepts, design and data sources. Los Baños: ICLARM; 2000.
  • [36]Schmidt TR, Gold JR: Complete sequence of the mitochondrial cytochrome-b gene in the cherryfin shiner, Lythrurus roseipinnis (Teleostei, cyprinidae). Copeia 1993, 1993:880-883.
  • [37]Lopez JA, Chen W-J, Orti G: Esociform phylogeny. Copeia 2004, 2004:449-464.
  • [38]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29:1969-1973.
  • [39]Maddison DR, Maddison WP: MacClade version 4: analyses of phylogeny and character evolution. Sunderland: Sinauer Associates; 2000.
  • [40]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25:1253-1256.
  • [41]Stamatakis A, Ludwig T, Meier H: RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 2005, 21:456-463.
  • [42]Smith GR, Cossel J Jr: Fishes from the late miocene poison creek and chalk hills formations, owyhee county, Idaho. In And whereas…papers on the vertebrate paleontology of Idaho honoring John A. White, Volume 2. Edited by Akersten WA, Thompson ME, Meldrum DJ, Raup RA, McDonald HG. Pocatello: Idaho Museum of Natural History; 2002:23-35.
  • [43]Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL: Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A 2012, 109:13698-13703.
  • [44]Miller MA, Pfeiffer W, Schwartz T: Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop. New Orleans; 2010:1-8.
  • [45]Rambaut A, Drummond AJ: Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer webcite
  • [46]Pagel M: Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc B 1994, 255:37-45.
  • [47]Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20:289-290.
  • [48]R Development Core Team: R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; http://www.R-project.org/ webcite
  • [49]Purvis A, Nee S, Harvey PH: Macroevolutionary influence from primate phylogeny. Proc R Soc B 1995, 260:329-333.
  • [50]Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W: GEIGER: investigation evolutionary radiations. Bioinformatics 2008, 24:129-131.
  • [51]Shah P, Fitzpatrick BM, Fordyce JA: A parametric method for assessing diversification -rate variation in phylogenetic trees. Evolution 2013, 67:368-377.
  • [52]Isaac NJB, Mallet J, Mace GM: Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol Evol 2004, 19:464-469.
  • [53]Rabosky DL: LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evol Bioinform Online 2006, 2:257-260.
  • [54]Pybus OG, Harvey PH: Testing macro-evolutionary models using incomplete molecular phylogenies. Proc R Soc B 2000, 267:2267-2272.
  • [55]Fordyce JA: Interpreting the gamma statistic in phylogenetic diversification rate studies: a rate decrease does not necessarily indicate an early burst. PLoS One 2010, 5:e11781.
  • [56]Rabosky DL: Likelihood methods for inferring temporal shifts in diversification rates. Evolution 2006, 60:1152-1164.
  文献评价指标  
  下载次数:28次 浏览次数:7次