期刊论文详细信息
BMC Microbiology
Molecular analysis of non-O1/non-O139 Vibrio cholerae isolated from hospitalised patients in China
Ruiting Lan2  Sophie Octavia2  Lingling Mei1  Zheng Zhang1  Gangqiang Ding1  Dazhi Jin1  Julian Ye1  Yun Luo1 
[1] Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China;School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
关键词: Type III secretion system;    Antibiotic resistance;    Multilocus sequence typing;    Pulsed-field gel electrophoresis;    Non-O1/non-O139 serogroups;    Vibrio cholerae;   
Others  :  1144214
DOI  :  10.1186/1471-2180-13-52
 received in 2012-07-10, accepted in 2013-02-26,  发布年份 2013
PDF
【 摘 要 】

Background

Cholera is still a significant public health issue in developing countries. The aetiological agent is Vibrio cholerae and only two serogroups, O1 and O139, are known to cause pandemic or epidemic cholera. In contrast, non-O1/non-O139 V. cholerae has only been reported to cause sporadic cholera-like illness and localised outbreaks. The aim of this study was to determine the genetic diversity of non-O1/non-O139 V. cholerae isolates from hospitalised diarrhoeal patients in Zhejiang Province, China.

Results

In an active surveillance of enteric pathogens in hospitalised diarrhoeal patients, nine non-O1/non-O139 V. cholerae isolates were identified from 746 diarrhoeal stool samples at a rate of 1.2%. These isolates and an additional 31 isolates from sporadic cases and three outbreaks were analysed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). PFGE divided the isolates into 25 PFGE types while MLST divided them into 15 sequence types (STs). A single ST, ST80, was predominant which persisted over several years in different cities and caused two outbreaks in recent years. Antibiotic resistance varied with the majority of the isolates resistant to sulphamethoxazole/trimethoprim and nearly all isolates either resistant or intermediate to erythromycin and rifampicin. None of the isolates carried the cholera toxin genes or toxin co-regulated pilus genes but the majority carried a type III secretion system as the key virulence factor.

Conclusions

Non-O1/non-O139 V. cholerae is an important contributor to diarrhoeal infections in China. Resistance to commonly used antibiotics limits treatment options. Continuous surveillance of non-O1/non-O139 V. cholerae is important for control and prevention of diarrhoeal infections.

【 授权许可】

   
2013 Luo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330094733259.pdf 728KB PDF download
Figure 2. 105KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Faruque SM, Albert MJ, Mekalanos JJ: Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 1998, 62:1301-1314.
  • [2]Dalsgaard A, Albert MJ, Taylor DN, Shimada T, Meza R, Serichantalergs O, Echeverria P: Characterization of Vibrio cholerae non-O1 serogroups obtained from an outbreak of diarrhea in Lima, Peru. J Clin Microbiol 1995, 33:2715-2722.
  • [3]Dalsgaard A, Forslund A, Bodhidatta L, Serichantalergs O, Pitarangsi C, Pang L, Shimada T, Echeverria P: A high proportion of Vibrio cholerae strains isolated from children with diarrhoea in Bangkok, Thailand are multiple antibiotic resistant and belong to heterogenous non-O1, non-O139 O-serotypes. Epidemiol Infect 1999, 122:217-226.
  • [4]Dalsgaard A, Serichantalergs O, Forslund A, Lin W, Mekalanos J, Mintz E, Shimada T, Wells JG: Clinical and environmental isolates of Vibrio cholerae serogroup O141 carry the CTX phage and the genes encoding the toxin-coregulated pili. J Clin Microbiol 2001, 39:4086-4092.
  • [5]Onifade TJ, Hutchinson R, Van Zile K, Bodager D, Baker R, Blackmore C: Toxin producing Vibrio cholerae O75 outbreak, United States, March to April 2011. Eurosurveillance 2011, 16:19870.
  • [6]Tobin-D'Angelo M, Smith AR, Bulens SN, Thomas S, Hodel M, Izumiya H, Arakawa E, Morita M, Watanabe H, Marin C: Severe diarrhea caused by cholera toxin-producing Vibrio cholerae serogroup O75 infections acquired in the Southeastern United States. Clin Infect Dis 2008, 47:1035-1040.
  • [7]Cariri FA, Costa AP, Melo CC, Theophilo GN, Hofer E, de Melo Neto OP, Leal NC: Characterization of potentially virulent non-O1/non-O139 Vibrio cholerae strains isolated from human patients. Clin Microbiol Infect 2010, 16:62-67.
  • [8]Ko WC, Chuang YC, Huang GC, Hsu SY: Infections due to non-O1 Vibrio cholerae in southern Taiwan: predominance in cirrhotic patients. Clin Infect Dis: an official publication of the Infectious Diseases Society of America 1998, 27:774-780.
  • [9]Blake PA, Allegra DT, Snyder JD, Barrett TJ, McFarland L, Caraway CT, Feeley JC, Craig JP, Lee JV, Puhr ND: Cholera- a possible endemic focus in the United States. New Engl J Med 1980, 302:305-309.
  • [10]Morris JM Jr: Non-O1 group 1 Vibrio cholerae strains not associated with epidemic disease. In Vibrio cholerae and cholera: molecular to global perspectives. Edited by Wachsmuth IK, Blake PA, Olsvik O. Washington: American Society for Microbiology; 1994.
  • [11]Bagchi K, Echeverria P, Arthur JD, Sethabutr O, Serichantalergs O, Hoge CW: Epidemic of diarrhea caused by Vibrio cholerae non-O1 that produced heat-stable toxin among Khmers in a camp in Thailand. J Clin Microbiol 1993, 31:1315-1317.
  • [12]Ramamurthy T, Bag PK, Pal A, Bhattacharya SK, Bhattacharya MK, Shimada T, Takeda T, Karasawa T, Kurazono H, Takeda Y: Virulence patterns of Vibrio cholerae non-O1 strains isolated from hospitalised patients with acute diarrhoea in Calcutta, India. J Med Microbiol 1993, 39:310-317.
  • [13]Rudra S, Mahajan R, Mathur M, Kathuria K, Talwar V: Cluster of cases of clinical cholera due to Vibrio cholerae O10 in east Delhi. Indian J Med Res 1996, 103:71-73.
  • [14]Sharma C, Thungapathra M, Ghosh A, Mukhopadhyay AK, Basu A, Mitra R, Basu I, Bhattacharya SK, Shimada T, Ramamurthy T: Molecular analysis of non-O1, non-O139 Vibrio cholerae associated with an unusual upsurge in the incidence of cholera-like disease in Calcutta, India. J Clin Microbiol 1998, 36:756-763.
  • [15]Bhattacharya MK, Dutta D, Bhattacharya SK, Deb A, Mukhopadhyay AK, Nair GB, Shimada T, Takeda Y, Chowdhury A, Mahalanabis D: Association of a disease approximating cholera caused by Vibrio cholerae of serogroups other than O1 and O139. Epidemiol Infect 1998, 120:1-5.
  • [16]Chatterjee S, Ghosh K, Raychoudhuri A, Chowdhury G, Bhattacharya MK, Mukhopadhyay AK, Ramamurthy T, Bhattacharya SK, Klose KE, Nandy RK: Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol 2009, 47:1087-1095.
  • [17]Teh CS, Chua KH, Thong KL: Genetic variation analysis of Vibrio cholerae using multilocus sequencing typing and multi-virulence locus sequencing typing. Infect Genet Evol 2011, 11:1121-1128.
  • [18]Rivera IN, Chun J, Huq A, Sack RB, Colwell RR: Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl Environ Microbiol 2001, 67:2421-2429.
  • [19]Singh DV, Matte MH, Matte GR, Jiang S, Sabeena F, Shukla BN, Sanyal SC, Huq A, Colwell RR: Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates. Appl Environ Microbiol 2001, 67:910-921.
  • [20]Faruque SM, Mekalanos JJ: Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol 2003, 11:505-510.
  • [21]Faruque SM, Naser IB, Islam MJ, Faruque AS, Ghosh AN, Nair GB, Sack DA, Mekalanos JJ: Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA 2005, 102:1702-1707.
  • [22]Faruque SM, Chowdhury N, Kamruzzaman M, Dziejman M, Rahman MH, Sack DA, Nair GB, Mekalanos JJ: Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area. Proc Natl Acad Sci USA 2004, 101:2123-2128.
  • [23]Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, Calderwood SB, Fraser C, Mekalanos JJ: Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A 1999, 96:1071-1076.
  • [24]Arita M, Takeda T, Honda T, Miwatani T: Purification and characterization of Vibrio cholerae non-O1 heat-stable enterotoxin. Infect Immun 1986, 52:45-49.
  • [25]Ogawa A, Kato J, Watanabe H, Nair BG, Takeda T: Cloning and nucleotide sequence of a heat-stable enterotoxin gene from Vibrio cholerae non-O1 isolated from a patient with traveler's diarrhea. Infect Immun 1990, 58:3325-3329.
  • [26]Theophilo GN, Rodrigues Ddos P, Leal NC, Hofer E: Distribution of virulence markers in clinical and environmental Vibrio cholerae non-O1/non-O139 strains isolated in Brazil from 1991 to 2000. Rev Inst Med Trop Sao Paulo 2006, 48:65-70.
  • [27]Alam A, Miller KA, Chaand M, Butler JS, Dziejman M: Identification of Vibrio cholerae type III secretion system effector proteins. Infect Immun 2011, 79:1728-1740.
  • [28]Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P, Faruque SM, Rahman MH, Heidelberg JF, Decker J, Li L: Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci USA 2005, 102:3465-3470.
  • [29]Shin OS, Tam VC, Suzuki M, Ritchie JM, Bronson RT, Waldor MK, Mekalanos JJ: Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. MBio 2011, 2:e00106-00111.
  • [30]Ottaviani D, Leoni F, Rocchegiani E, Santarelli S, Masini L, Di Trani V, Canonico C, Pianetti A, Tega L, Carraturo A: Prevalence and virulence properties of non-O1 non-O139 Vibrio cholerae strains from seafood and clinical samples collected in Italy. Int J Food Microbiol 2009, 132:47-53.
  • [31]Cooper KL, Luey CK, Bird M, Terajima J, Nair GB, Kam KM, Arakawa E, Safa A, Cheung DT, Law CP: Development and validation of a PulseNet standardized pulsed-field gel electrophoresis protocol for subtyping of Vibrio cholerae. Foodborne Pathog Dis 2006, 3:51-58.
  • [32]Salim A, Lan R, Reeves PR: Vibrio cholerae pathogenic clones. Emerg Infect Dis 2005, 11:1758-1760.
  • [33]Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG: eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 2004, 186:1518-1530.
  • [34]Beaber JW, Hochhut B, Waldor MK: Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J Bacteriol 2002, 184:4259-4269.
  • [35]Waldor MK, Tschape H, Mekalanos JJ: A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 1996, 178:4157-4165.
  • [36]Hochhut B, Lotfi Y, Mazel D, Faruque SM, Woodgate R, Waldor MK: Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother 2001, 45:2991-3000.
  • [37]Yu L, Zhou Y, Wang R, Lou J, Zhang L, Li J, Bi Z, Kan B: Multiple antibiotic resistance of Vibrio cholerae serogroup O139 in China from 1993 to 2009. PLoS One 2012, 7:e38633.
  • [38]Kitaoka M, Miyata ST, Unterweger D, Pukatzki S: Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 2011, 60:397-407.
  • [39]Shirai H, Nishibuchi M, Ramamurthy T, Bhattacharya SK, Pal SC, Takeda Y: Polymerase chain reaction for detection of the cholera enterotoxin operon of Vibrio cholerae. J Clin Microbiol 1991, 29:2517-2521.
  • [40]Tay CY, Reeves PR, Lan R: Importation of the major pilin TcpA gene and frequent recombination drive the divergence of the Vibrio pathogenicity island in Vibrio cholerae. FEMS Microbiol Lett 2008, 289:210-218.
  • [41]Leal NC, Sobreira M, Leal-Balbino TC, de Almeida AM, de Silva MJ, Mello DM, Seki LM, Hofer E: Evaluation of a RAPD-based typing scheme in a molecular epidemiology study of Vibrio cholerae O1, Brazil. J Appl Microbiol 2004, 96:447-454.
  • [42]Nandi B, Nandy RK, Mukhopadhyay S, Nair GB, Shimada T, Ghose AC: Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. J Clin Microbiol 2000, 38:4145-4151.
  • [43]Byun R, Elbourne LD, Lan R, Reeves PR: Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect Immun 1999, 67:1116-1124.
  • [44]Skorupski K, Taylor RK: Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol Microbiol 1997, 25:1003-1009.
  • [45]Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ: Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci USA 2002, 99:1556-1561.
  • [46]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W- Impoving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specifc gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [47]Hunter PR, Gaston MA: Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 1988, 26:2465-2466.
  • [48]Pupo GM, Lan R, Reeves PR, Baverstock P: Population Genetics of Escherichia coli in a Natural Population of Native Australian Rats. Environ Microbiol 2000, 2:594-610.
  • [49]Anonymous: Clinical and Laboratory Standards Institute.Clinical and Laboratory Standards Institute document M2-A9. In Performance Standards for Antimicrobial Disk Susceptibility Tests;Approved Standard-Ninth Edition. ninth edition. 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087–1898 USA: Clinical And Laboratory Standards Institute; 2006. ISBN 1-56238-586-0
  文献评价指标  
  下载次数:0次 浏览次数:6次