期刊论文详细信息
BMC Genomics
Genome-wide mapping of matrix attachment regions in Drosophila melanogaster
Rakesh K Mishra1  Arumugam Srinivasan1  Rashmi U Pathak1 
[1] Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
关键词: Genome packaging;    Matrix attachment regions;    Nuclear matrix;   
Others  :  1091038
DOI  :  10.1186/1471-2164-15-1022
 received in 2014-06-20, accepted in 2014-11-12,  发布年份 2014
PDF
【 摘 要 】

Background

Eukaryotic genome acquires functionality upon proper packaging within the nucleus. This process is facilitated by the structural framework of Nuclear Matrix, a nucleo-proteinaceous meshwork. Matrix Attachment Regions (MARs) in the genome serve as anchoring sites to this framework.

Results

Here we report direct sequencing of the MAR preparation from Drosophila melanogaster embryos and identify >7350 MARs. This amounts to ~2.5% of the fly genome and often coincide with AT rich non-coding regions. We find significant association of MARs with the origins of replication, transcription start sites, paused RNA Polymerase II sites and exons, but not introns, of highly expressed genes. We also identified sequence motifs and repeats that constitute MARs.

Conclusion

Our data reveal the contact points of genome to the nuclear architecture and provide a link between nuclear functions and genomic packaging.

【 授权许可】

   
2014 Pathak et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128165112614.pdf 1339KB PDF download
Figure 4. 61KB Image download
Figure 3. 77KB Image download
Figure 2. 58KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Berezney R, Coffey DS: Nuclear protein matrix: association with newly synthesized DNA. Science 1975, 189:291-293.
  • [2]Cockerill PN, Garrard WT: Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 1986, 44:273-282.
  • [3]Jackson DA, Cook PR: Visualization of a filamentous nucleoskeleton with a 23 nm axial repeat. EMBO J 1988, 7:3667-3677.
  • [4]Nickerson JA, Krockmalnic G, Wan KM, Penman S: The nuclear matrix revealed by eluting chromatin from a cross-linked nucleus. Proc Natl Acad Sci U S A 1997, 94:4446-4450.
  • [5]Hemmerich P, Schmiedeberg L, Diekmann S: Dynamic as well as stable protein interactions contribute to genome function and maintenance. Chromosome Res 2011, 19:131-151.
  • [6]Moir RD, Spann TP, Herrmann H, Goldman RD: Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol 2000, 149:1179-1192.
  • [7]Kumaran RI, Muralikrishna B, Parnaik VK: Lamin A/C speckles mediate spatial organization of splicing factor compartments and RNA polymerase II transcription. J Cell Biol 2002, 159:783-793.
  • [8]de Lanerolle P, Serebryannyy L: Nuclear actin and myosins: life without filaments. Nat Cell Biol 2011, 13:1282-1288.
  • [9]Kallappagoudar S, Varma P, Pathak RU, Senthilkumar R, Mishra RK: Nuclear matrix proteome analysis of Drosophila melanogaster. Mol Cell Proteomics 2010, 9:2005-2018.
  • [10]Calikowski TT, Meulia T, Meier I: A proteomic study of the arabidopsis nuclear matrix. J Cell Biochem 2003, 90:361-378.
  • [11]Engelke R, Riede J, Hegermann J, Wuerch A, Eimer S, Dengjel J, Mittler G: The quantitative nuclear matrix proteome as a biochemical snapshot of nuclear organization. J Proteome Res 2014, 13:3940-3956.
  • [12]Kouzarides T: Chromatin modifications and their function. Cell 2007, 128:693-705.
  • [13]Meldi L, Brickner JH: Compartmentalization of the nucleus. Trends Cell Biol 2011, 21:701-708.
  • [14]Mirkovitch J, Mirault ME, Laemmli UK: Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 1984, 39:223-232.
  • [15]Pardoll DM, Vogelstein B: Sequence analysis of nuclear matrix associated DNA from rat liver. Exp Cell Res 1980, 128:466-470.
  • [16]Gasser SM, Amati BB, Cardenas ME, Hofmann JF: Studies on scaffold attachment sites and their relation to genome function. Int Rev Cytol 1989, 119:57-96.
  • [17]Heng HH, Goetze S, Ye CJ, Liu G, Stevens JB, Bremer SW, Wykes SM, Bode J, Krawetz SA: Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. J Cell Sci 2004, 117:999-1008.
  • [18]Breyne P, van Montagu M, Depicker N, Gheysen G: Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell 1992, 4:463-471.
  • [19]Avramova Z, Tikhonov A, Chen M, Bennetzen JL: Matrix attachment regions and structural colinearity in the genomes of two grass species. Nucleic Acids Res 1998, 26:761-767.
  • [20]Bode J, Kohwi Y, Dickinson L, Joh T, Klehr D, Mielke C, Kohwi-Shigematsu T: Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 1992, 255:195-197.
  • [21]Yamamura J, Nomura K: Analysis of sequence-dependent curvature in matrix attachment regions. FEBS Lett 2001, 489:166-170.
  • [22]Gasser SM, Laemmli UK: Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell 1986, 46:521-530.
  • [23]Amati B, Gasser SM: Drosophila scaffold-attached regions bind nuclear scaffolds and can function as ARS elements in both budding and fission yeasts. Mol Cell Biol 1990, 10:5442-5454.
  • [24]Forrester WC, van Genderen C, Jenuwein T, Grosschedl R: Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science 1994, 265:1221-1225.
  • [25]Jenuwein T, Forrester WC, Fernandez-Herrero LA, Laible G, Dull M, Grosschedl R: Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 1997, 385:269-272.
  • [26]Yusufzai TM, Felsenfeld G: The 5′-HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element. Proc Natl Acad Sci U S A 2004, 101:8620-8624.
  • [27]Evans K, Ott S, Hansen A, Koentges G, Wernisch L: A comparative study of S/MAR prediction tools. BMC Bioinformatics 2007, 8:71. BioMed Central Full Text
  • [28]Keaton MA, Taylor CM, Layer RM, Dutta A: Nuclear scaffold attachment sites within ENCODE regions associate with actively transcribed genes. PLoS ONE 2011, 6:e17912.
  • [29]Pathak RU, Rangaraj N, Kallappagoudar S, Mishra K, Mishra RK: Boundary element-associated factor 32B connects chromatin domains to the nuclear matrix. Mol Cell Biol 2007, 27:4796-4806.
  • [30]Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008, 9:R137. BioMed Central Full Text
  • [31]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [32]Singh GB, Kramer JA, Krawetz SA: Mathematical model to predict regions of chromatin attachment to the nuclear matrix. Nucleic Acids Res 1997, 25:1419-1425.
  • [33]Frisch M, Frech K, Klingenhoff A, Cartharius K, Liebich I, Werner T: In silico prediction of scaffold/matrix attachment regions in large genomic sequences. Genome Res 2002, 12:349-354.
  • [34]Gasser SM, Laemmli UK: The organisation of chromatin loops: characterization of a scaffold attachment site. EMBO J 1986, 5:511-518.
  • [35]Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, et al.: The developmental transcriptome of Drosophila melanogaster. Nature 2011, 471:473-479.
  • [36]Dye MJ, Gromak N, Proudfoot NJ: Exon tethering in transcription by RNA polymerase II. Mol Cell 2006, 21:849-859.
  • [37]Schwartz S, Meshorer E, Ast G: Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 2009, 16:990-995.
  • [38]Boulikas T: Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J Cell Biochem 1993, 52:14-22.
  • [39]Sander M, Hsieh TS: Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site. Nucleic Acids Res 1985, 13:1057-1072.
  • [40]Kas E, Laemmli UK: In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO J 1992, 11:705-716.
  • [41]Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M, Young RA: RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 2007, 39:1512-1516.
  • [42]Kumar RP, Senthilkumar R, Singh V, Mishra RK: Repeat performance: how do genome packaging and regulation depend on simple sequence repeats? Bioessays 2010, 32:165-174.
  • [43]Narlikar L: MuMoD: a Bayesian approach to detect multiple modes of protein-DNA binding from genome-wide ChIP data. Nucleic Acids Res 2013, 41:21-32.
  • [44]Nabirochkin S, Ossokina M, Heidmann T: A nuclear matrix/scaffold attachment region co-localizes with the gypsy retrotransposon insulator sequence. J Biol Chem 1998, 273:2473-2479.
  • [45]Negre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, Kheradpour P, Eaton ML, Loriaux P, Sealfon R, Li Z, Ishii H, Spokony RF, Chen J, Hwang L, Cheng C, Auburn RP, Davis MB, Domanus M, Shah PK, Morrison CA, Zieba J, Suchy S, Senderowicz L, Victorsen A, Bild NA, Grundstad AJ, Hanley D, MacAlpine DM, Mannervik M, et al.: A cis-regulatory map of the Drosophila genome. Nature 2011, 471:527-531.
  • [46]Srinivasan A, Mishra RK: Chromatin domain boundary element search tool for Drosophila. Nucleic Acids Res 2012, 40:4385-4395.
  • [47]Kumar RP, Krishnan J, Pratap Singh N, Singh L, Mishra RK: GATA simple sequence repeats function as enhancer blocker boundaries. Nat Commun 2013, 4:1844.
  • [48]Kazazian HH Jr: Mobile elements: drivers of genome evolution. Science 2004, 303:1626-1632.
  • [49]Luderus ME, de Graaf A, Mattia E, den Blaauwen JL, Grande MA, de Jong L, van Driel R: Binding of matrix attachment regions to lamin B1. Cell 1992, 70:949-959.
  • [50]Gerasimova TI, Corces VG: Chromatin insulators and boundaries: effects on transcription and nuclear organization. Annu Rev Genet 2001, 35:193-208.
  • [51]Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA: Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 1999, 145:1119-1131.
  • [52]Gerdes MG, Carter KC, Moen PT Jr, Lawrence JB: Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos. J Cell Biol 1994, 126:289-304.
  • [53]Gilchrist DA, Fromm G, dos Santos G, Pham LN, McDaniel IE, Burkholder A, Fargo DC, Adelman K: Regulating the regulators: the pervasive effects of Pol II pausing on stimulus-responsive gene networks. Genes Dev 2012, 26:933-944.
  • [54]Hendrix DA, Hong JW, Zeitlinger J, Rokhsar DS, Levine MS: Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc Natl Acad Sci U S A 2008, 105:7762-7767.
  • [55]Brodsky AS, Meyer CA, Swinburne IA, Hall G, Keenan BJ, Liu XS, Fox EA, Silver PA: Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells. Genome Biol 2005, 6:R64. BioMed Central Full Text
  • [56]Shim EY, Hong SJ, Oum JH, Yanez Y, Zhang Y, Lee SE: RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol Cell Biol 2007, 27:1602-1613.
  • [57]Workman JL: Nucleosome displacement in transcription. Genes Dev 2006, 20:2009-2017.
  • [58]Negre N, Brown CD, Shah PK, Kheradpour P, Morrison CA, Henikoff JG, Feng X, Ahmad K, Russell S, White RA, Stein L, Henikoff S, Kellis M, White KP: A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 2010, 6:e1000814.
  • [59]Subramanian S, Mishra RK, Singh L: Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 2003, 4:R13. BioMed Central Full Text
  文献评价指标  
  下载次数:56次 浏览次数:9次