期刊论文详细信息
BMC Research Notes
Identification of a set of endogenous reference genes for miRNA expression studies in Parkinson’s disease blood samples
Christine Schwienbacher1  Andrew A Hicks1  Peter P Pramstaller2  Alessandra Zanon1  Stefano Zanigni1  Anne Picard1  Hagen Blankenburg1  Luisa Foco1  Alice Serafin1 
[1] Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), 39100 Bolzano, Italy, Affiliated Institute of the University of Lübeck, Lübeck, Germany;Department of Neurology, University of Lübeck, Lübeck, 23538, Germany
关键词: Comparative delta-Ct;    Normfinder algorithm;    geNorm algorithm;    snRNA;    snoRNA;    qRT-PCR;   
Others  :  1127290
DOI  :  10.1186/1756-0500-7-715
 received in 2014-06-17, accepted in 2014-10-02,  发布年份 2014
PDF
【 摘 要 】

Background

Research on microRNAs (miRNAs) is becoming an increasingly attractive field, as these small RNA molecules are involved in several physiological functions and diseases. To date, only few studies have assessed the expression of blood miRNAs related to Parkinson’s disease (PD) using microarray and quantitative real-time PCR (qRT-PCR). Measuring miRNA expression involves normalization of qRT-PCR data using endogenous reference genes for calibration, but their choice remains a delicate problem with serious impact on the resulting expression levels. The aim of the present study was to evaluate the suitability of a set of commonly used small RNAs as normalizers and to identify which of these miRNAs might be considered reliable reference genes in qRT-PCR expression analyses on PD blood samples.

Results

Commonly used reference genes snoRNA RNU24, snRNA RNU6B, snoRNA Z30 and miR-103a-3p were selected from the literature. We then analyzed the effect of using these genes as reference, alone or in any possible combination, on the measured expression levels of the target genes miR-30b-5p and miR-29a-3p, which have been previously reported to be deregulated in PD blood samples.

Conclusions

We identified RNU24 and Z30 as a reliable and stable pair of reference genes in PD blood samples.

【 授权许可】

   
2014 Serafin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220090452254.pdf 250KB PDF download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Saini HK, Griffiths-Jones S, Enright AJ: Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci U S A 2007, 104(45):17719-17724.
  • [2]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [3]Heyer MP, Pani AK, Smeyne RJ, Kenny PJ, Feng G: Normal midbrain dopaminergic neuron development and function in miR-133b mutant mice. J Neurosci 2012, 32(32):10887-10894.
  • [4]Bras J, Singleton A, Cookson MR, Hardy J: Emerging pathways in genetic Parkinson’s disease: Potential role of ceramide metabolism in Lewy body disease. FEBS J 2008, 275(23):5767-5773.
  • [5]Shtilbans A, Henchcliffe C: Biomarkers in Parkinson’s disease: an update. Curr Opin Neurol 2012, 25(4):460-465.
  • [6]Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA: The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 2006, 147(3):126-132.
  • [7]Margis R, Margis R, Rieder CR: Identification of blood microRNAs associated to Parkinsonis disease. J Biotechnol 2011, 152(3):96-101.
  • [8]Martins M, Rosa A, Guedes LC, Fonseca BV, Gotovac K, Violante S, Mestre T, Coelho M, Rosa MM, Martin ER, Vance JM, Outeiro TF, Wang L, Borovecki F, Ferreira JJ, Oliveira SA: Convergence of miRNA expression profiling, alpha-synuclein interacton and GWAS in Parkinson’s disease. PLoS One 2011, 6(10):e25443.
  • [9]Kang K, Peng X, Luo J, Gou D: Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling. J Anim Sci Biotechnol 2012, 3(1):1-9. BioMed Central Full Text
  • [10]D’haene B, Mestdagh P, Hellemans J, Vandesompele J: miRNA expression profiling: from reference genes to global mean normalization. Methods Mol Biol 2012, 822:261-272.
  • [11]Hellemans J, Vandesompele J: qPCR data analysis - unlocking the secret to successful results. In PCR Troubleshooting and Optimization: The Essential Guide. Edited by Suzanne K, Nick O. Poole (UK): MO BIO Laboratories. Caister Academic Press; 2011:1-13.
  • [12]Wotschofsky Z, Meyer HA, Jung M, Fendler A, Wagner I, Stephan C, Busch J, Erbersdobler A, Disch AC, Mollenkopf HJ, Jung K: Reference genes for the relative quantification of microRNAs in renal cell carcinomas and their metastases. Anal Biochem 2011, 417(2):233-241.
  • [13]Sanders I, Holdenrieder S, Walgenbach-Brunagel G, von Ruecker A, Kristiansen G, Muller SC, Ellinger J: Evaluation of reference genes for the analysis of serum miRNA in patients with prostate cancer, bladder cancer and renal cell carcinoma. Int J Urol 2012, 19(11):1017-1025.
  • [14]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):1-12.
  • [15]Peltier HJ, Latham GJ: Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008, 14(5):844-852.
  • [16]Latham G: Normalization of MicroRNA Quantitative RT-PCR Data in Reduced Scale Experimental Designs. In MicroRNAs and the Immune System: Methods and Protocols, Methods in Molecular Biology. Volume 667. Edited by Springer Science+Business Media, Monticelli S. New York: Humana Press; 2010:19-31.
  • [17]Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, Patil M, Sheldon H, Betts G, Homer J, West C, Ragoussis J, Harris AL: The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer 2011, 104(7):1168-1177.
  • [18]Khoo SK, Petillo D, Kang UJ, Resau JH, Berryhill B, Linder J, Forsgren L, Neuman LA, Tan AC: Plasma-Based Circulating MicroRNA Biomarkers for Parkinson’s Disease. J Parkinson’s Dis 2012, 2:321-331.
  • [19]Cardo LF, Coto E, de Mena L, Ribacoba R, Moris G, Menendez M, Alvarez V: Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol 2013, 260(5):1420-1422.
  • [20]Silver N, Best S, Jiang J, Thein SL: Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 2006, 7:33. BioMed Central Full Text
  • [21]Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64(15):5245-5250.
  • [22]Gelb DJ, Oliver E, Gilman S: Diagnostic criteria for Parkinson disease. Arch Neurol 1999, 56(1):33-39.
  • [23]Tukey JW: Exploratory Data Analysis. Boston: Anonymous Addison-Wesley Publishing Company, Reading, MA; 1977.
  • [24]StataCorp: Stata Statistical Software: Release 12. College Station, TX: StataCorp LP; 2011.
  • [25]Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A: Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 2004, 37(1):112. –4, 116, 118–9
  • [26]Valente V, Teixeira SA, Neder L, Okamoto OK, Oba-Shinjo SM, Marie SK, Scrideli CA, Paco-Larson ML, Carlotti CG Jr: Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative RT-PCR. BMC Mol Biol 2009, 10:17-2199. 10-17 BioMed Central Full Text
  • [27]Benn CL, Fox H, Bates GP: Optimisation of region-specific reference gene selection and relative gene expression analysis methods for pre-clinical trials of Huntington’s disease. Mol Neurodegener 2008, 3:1-17. BioMed Central Full Text
  • [28]Glare EM, Divjak M, Bailey MJ, Walters EH: beta-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax 2002, 57(9):765-770.
  • [29]Sikand K, Singh J, Ebron JS, Shukla GC: Housekeeping gene selection advisory: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin are targets of miR-644a. PLoS One 2012, 7(10):e47510.
  • [30]Moncini S, Salvi A, Zuccotti P, Viero G, Quattrone A, Barlati S, De Petro G, Venturin M, Riva P: The role of miR-103 and miR-107 in regulation of CDK5R1 expression and in cellular migration. PLoS One 2011, 6(5):e20038.
  • [31]Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, Mount MP, O’Hare MJ, Callaghan S, Slack RS, Przedborski S, Anisman H, Park DS: Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 2003, 100(23):13650-13655.
  • [32]Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT: The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008, 28(5):1213-1223.
  • [33]Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M: MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011, 474(7353):649-653.
  • [34]Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K, Fernandez C, Travers ME, Grew JP, Randall JC, Gloyn AL, Gauguier D, McCarthy MI, Lindgren CM: Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 2010, 53(6):1099-1109.
  • [35]Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK: microRNA expression patterns reveal differential expression of target genes with age. PLoS One 2010, 5(5):e10724.
  • [36]Lim QE, Zhou L, Ho YK, Wan G, Too HP: snoU6 and 5S RNAs are not reliable miRNA reference genes in neuronal differentiation. Neuroscience 2011, 199:32-43.
  文献评价指标  
  下载次数:20次 浏览次数:17次