期刊论文详细信息
BMC Clinical Pathology
VRK2 identifies a subgroup of primary high-grade astrocytomas with a better prognosis
Pedro A Lazo4  Rogelio González-Sarmiento6  Javier Martin-Vallejo3  Juan A Gómez-Moreta2  Isabel F Fernández6  Juan L García5  Angel Santos-Briz1  Marta Vázquez-Cedeira4  Irene Rodríguez-Hernández6 
[1] Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain;Departamento de Neurocirugía, Hospital Universitario de Salamanca, Salamanca, Spain;Departamento de Estadística, Universidad de Salamanca, Salamanca, Spain;Instituto de Investigación Biomédica de Salamanca-IBSAL, Hospital Universitario de Salamanca, Salamanca, Spain;Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain;Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
关键词: Prognosis;    Immunohistochemistry;    VRK2;    VRK1;    Glioblastoma;    Astrocytoma;   
Others  :  1084844
DOI  :  10.1186/1472-6890-13-23
 received in 2013-05-10, accepted in 2013-09-27,  发布年份 2013
PDF
【 摘 要 】

Background

Malignant astrocytomas are the most common primary brain tumors and one of the most lethal among human cancers despite optimal treatment. Therefore, the characterization of molecular alterations underlying the aggressive behavior of these tumors and the identification of new markers are thus an important step towards a better patient stratification and management.

Methods and results

VRK1 and VRK2 (Vaccinia-related kinase-1, -2) expression, as well as proliferation markers, were determined in a tissue microarray containing 105 primary astrocytoma biopsies. Kaplan Meier and Cox models were used to find clinical and/or molecular parameters related to overall survival. The effects of VRK protein levels on proliferation were determined in astrocytoma cell lines. High levels of both protein kinases, VRK1 or VRK2, correlated with proliferation markers, p63 or ki67. There was no correlation with p53, reflecting the disruption of the VRK-p53-DRAM autoregulatory loop as a consequence of p53 mutations. High VRK2 protein levels identified a subgroup of astrocytomas that had a significant improvement in survival. The potential effect of VRK2 was studied by analyzing the growth characteristics of astrocytoma cell lines with different EGFR/VRK2 protein ratios.

Conclusion

High levels of VRK2 resulted in a lower growth rate suggesting these cells are more indolent. In high-grade astrocytomas, VRK2 expression constitutes a good prognostic marker for patient survival.

【 授权许可】

   
2013 Rodríguez-Hernández et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113164749661.pdf 1052KB PDF download
Figure 3. 43KB Image download
Figure 2. 43KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY: Primary brain tumours in adults. Lancet 2012, 379:1984-1996.
  • [2]Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica 2007, 114:97-109.
  • [3]Burkhard C, Di Patre PL, Schuler D, Schuler G, Yasargil MG, Yonekawa Y, Lutolf UM, Kleihues P, Ohgaki H: A population-based study of the incidence and survival rates in patients with pilocytic astrocytoma. J Neurosurg 2003, 98:1170-1174.
  • [4]Wehming FM, Wiese B, Nakamura M, Bremer M, Karstens JH, Meyer A: Malignant glioma grade 3 and 4: how relevant is timing of radiotherapy? Clin neurol neurosurg 2012, 114:617-621.
  • [5]Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, et al.: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009, 10:459-466.
  • [6]Riemenschneider MJ, Jeuken JW, Wesseling P, Reifenberger G: Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 2010, 120:567-584.
  • [7]Nichols RJ, Traktman P: Characterization of three paralogous members of the Mammalian vaccinia related kinase family. J Biol Chem 2004, 279:7934-7946.
  • [8]Renbaum P, Kellerman E, Jaron R, Geiger D, Segel R, Lee M, King MC, Levy-Lahad E: Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am J Hum Genet 2009, 85:281-289.
  • [9]Sanz-Garcia M, Vazquez-Cedeira M, Kellerman E, Renbaum P, Levy-Lahad E, Lazo PA: Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications. J Proteomics 2011, 75:548-560.
  • [10]Steinberg S, De Jong S, Andreassen OA, Werge T, Borglum AD, Mors O, Mortensen PB, Gustafsson O, Costas J, Pietilainen OP, et al.: Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet 2011, 20:4076-4081.
  • [11]Irish Schizophrenia Genomics C: Genome-wide Association Study Implicates HLA-C*01:02 as a Risk Factor at the Major Histocompatibility Complex Locus in Schizophrenia. Biol Psychiatry 2012, 72:620-628.
  • [12]Li M, Wang Y, Zheng XB, Ikeda M, Iwata N, Luo XJ, Chong SA, Lee J, Rietschel M, Zhang F, et al.: Meta-analysis and brain imaging data support the involvement of VRK2 (rs2312147) in schizophrenia susceptibility. Schizophr Res 2012, 142:200-205.
  • [13]Consortium E, Consortium EM, Steffens M, Leu C, Ruppert AK, Zara F, Striano P, Robbiano A, Capovilla G, Tinuper P, et al.: Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum Mol Genet 2012, 21:5359-5372.
  • [14]Valbuena A, Sanz-Garcia M, Lopez-Sanchez I, Vega FM, Lazo PA: Roles of VRK1 as a new player in the control of biological processes required for cell division. Cell Signal 2011, 23:1267-1272.
  • [15]Valbuena A, Lopez-Sanchez I, Lazo PA: Human VRK1 is an early response gene and its loss causes a block in cell cycle progression. PLoS ONE 2008, 3:e1642.
  • [16]Lopez-Borges S, Lazo PA: The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Oncogene 2000, 19:3656-3664.
  • [17]Vega FM, Sevilla A, Lazo PA: p53 Stabilization and accumulation induced by human vaccinia-related kinase 1. Mol Cell Biol 2004, 24:10366-10380.
  • [18]Valbuena A, Blanco S, Vega FM, Lazo PA: The C/H3 domain of p300 is required to protect VRK1 and VRK2 from their downregulation induced by p53. PLoS ONE 2008, 3:e2649.
  • [19]Sevilla A, Santos CR, Barcia R, Vega FM, Lazo PA: c-Jun phosphorylation by the human vaccinia-related kinase 1 (VRK1) and its cooperation with the N-terminal kinase of c-Jun (JNK). Oncogene 2004, 23:8950-8958.
  • [20]Sevilla A, Santos CR, Vega FM, Lazo PA: Human vaccinia-related kinase 1 (VRK1) activates the ATF2 transcriptional activity by novel phosphorylation on Thr-73 and Ser-62 and cooperates with JNK. J Biol Chem 2004, 279:27458-27465.
  • [21]Kang TH, Park DY, Kim W, Kim KT: VRK1 phosphorylates CREB and mediates CCND1 expression. J Cell Sci 2008, 121:3035-3041.
  • [22]Kang TH, Park DY, Choi YH, Kim KJ, Yoon HS, Kim KT: Mitotic histone H3 phosphorylation by vaccinia-related kinase 1 in mammalian cells. Mol Cell Biol 2007, 27:8533-8546.
  • [23]Sanz-Garcia M, Monsalve DM, Sevilla A, Lazo PA: Vaccinia-related Kinase 1 (VRK1) is an upstream nucleosomal kinase required for the assembly of 53BP1 foci in response to ionizing radiation-induced DNA damage. J Biol Chem 2012, 287:23757-23768.
  • [24]Valbuena A, Vega FM, Blanco S, Lazo PA: p53 downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop. Mol Cell Biol 2006, 26:4782-4793.
  • [25]Valbuena A, Castro-Obregon S, Lazo PA: Downregulation of VRK1 by p53 in response to DNA damage Is mediated by the autophagic pathway. PLoS ONE 2011, 6:e17320.
  • [26]Santos CR, Rodriguez-Pinilla M, Vega FM, Rodriguez-Peralto JL, Blanco S, Sevilla A, Valbuena A, Hernandez T, Van Wijnen AJ, Li F, et al.: VRK1 signaling pathway in the context of the proliferation phenotype in head and neck squamous cell carcinoma. Mol Cancer Res 2006, 4:177-185.
  • [27]Valbuena A, Suarez-Gauthier A, Lopez-Rios F, Lopez-Encuentra A, Blanco S, Fernandez PL, Sanchez-Cespedes M, Lazo PA: Alteration of the VRK1-p53 autoregulatory loop in human lung carcinomas. Lung Cancer 2007, 58:303-309.
  • [28]Blanco S, Klimcakova L, Vega FM, Lazo PA: The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. Febs J 2006, 273:2487-2504.
  • [29]Blanco S, Santos C, Lazo PA: Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol 2007, 27:7273-7283.
  • [30]Blanco S, Sanz-Garcia M, Santos CR, Lazo PA: Modulation of interleukin-1 transcriptional response by the interaction between VRK2 and the JIP1 scaffold protein. PLoS ONE 2008, 3:e1660.
  • [31]Fernandez IF, Blanco S, Lozano J, Lazo PA: VRK2 inhibits mitogen-activated protein kinase signaling and inversely correlates with ErbB2 in human breast cancer. Mol Cell Biol 2010, 30:4687-4697.
  • [32]Fernandez IF, Perez-Rivas LG, Blanco S, Castillo-Dominguez AA, Lozano J, Lazo PA: VRK2 anchors KSR1-MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling. Cell Mol Life Sci 2012, 69:3881-3893.
  • [33]Valbuena A, Lopez-Sanchez I, Vega FM, Sevilla A, Sanz-Garcia M, Blanco S, Lazo PA: Identification of a dominant epitope in human vaccinia-related kinase 1 (VRK1) and detection of different intracellular subpopulations. Arch Biochem Biophys 2007, 465:219-226.
  • [34]Jeuken JW, Cornelissen SJ, Vriezen M, Dekkers MM, Errami A, Sijben A, Boots-Sprenger SH, Wesseling P: MS-MLPA: an attractive alternative laboratory assay for robust, reliable, and semiquantitative detection of MGMT promoter hypermethylation in gliomas. Lab Invest 2007, 87:1055-1065.
  • [35]Garcia JL, Perez-Caro M, Gomez-Moreta JA, Gonzalez F, Ortiz J, Blanco O, Sancho M, Hernandez-Rivas JM, Gonzalez-Sarmiento R, Sanchez-Martin M: Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas. BMC cancer 2010, 10:454. BioMed Central Full Text
  • [36]Parmar MKB, Cheung YB, Machin D (Eds): Survival analysis: A practical approach. 2nd edition. Chichester, England: John Wiley and Sons; 2007.
  • [37]McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, Statistics Subcommittee of the NCIEWGoCD: Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 2005, 23:9067-9072.
  • [38]Lopez-Sanchez I, Sanz-Garcia M, Lazo PA: Plk3 interacts with and specifically phosphorylates VRK1 in Ser342, a downstream target in a pathway that induces Golgi fragmentation. Mol Cell Biol 2009, 29:1189-1201.
  • [39]Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, De Tribolet N, Regli L, Wick W, Kouwenhoven MC, et al.: Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 2008, 26:3015-3024.
  • [40]Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002, 2:489-501.
  文献评价指标  
  下载次数:64次 浏览次数:14次