期刊论文详细信息
BMC Genomics
Identification of a strawberry flavor gene candidate using an integrated genetic-genomic-analytical chemistry approach
Kevin M Folta3  Vance M Whitaker4  Jinhe Bai1  Anne Plotto1  Jeremy Pillet2  Alan H Chambers2 
[1] Horticultural Research Laboratory, Agriculture Research Service, USDA, Ft. Pierce, FL, USA;Horticultural Sciences Department, University of Florida, Gainesville, FL, USA;Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA;Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, USA
关键词: Strawberry;    Molecular marker;    Flavor;    Fragaria;    γ-decalactone;    RNA-seq;   
Others  :  1217453
DOI  :  10.1186/1471-2164-15-217
 received in 2013-11-14, accepted in 2014-03-17,  发布年份 2014
PDF
【 摘 要 】

Background

There is interest in improving the flavor of commercial strawberry (Fragaria × ananassa) varieties. Fruit flavor is shaped by combinations of sugars, acids and volatile compounds. Many efforts seek to use genomics-based strategies to identify genes controlling flavor, and then designing durable molecular markers to follow these genes in breeding populations. In this report, fruit from two cultivars, varying for presence-absence of volatile compounds, along with segregating progeny, were analyzed using GC/MS and RNAseq. Expression data were bulked in silico according to presence/absence of a given volatile compound, in this case γ-decalactone, a compound conferring a peach flavor note to fruits.

Results

Computationally sorting reads in segregating progeny based on γ-decalactone presence eliminated transcripts not directly relevant to the volatile, revealing transcripts possibly imparting quantitative contributions. One candidate encodes an omega-6 fatty acid desaturase, an enzyme known to participate in lactone production in fungi, noted here as FaFAD1. This candidate was induced by ripening, was detected in certain harvests, and correlated with γ-decalactone presence. The FaFAD1 gene is present in every genotype where γ-decalactone has been detected, and it was invariably missing in non-producers. A functional, PCR-based molecular marker was developed that cosegregates with the phenotype in F1 and BC1 populations, as well as in many other cultivars and wild Fragaria accessions.

Conclusions

Genetic, genomic and analytical chemistry techniques were combined to identify FaFAD1, a gene likely controlling a key flavor volatile in strawberry. The same data may now be re-sorted based on presence/absence of any other volatile to identify other flavor-affecting candidates, leading to rapid generation of gene-specific markers.

【 授权许可】

   
2014 Chambers et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706171639698.pdf 2963KB PDF download
Figure 9. 107KB Image download
Figure 8. 61KB Image download
Figure 7. 25KB Image download
Figure 6. 55KB Image download
Figure 5. 37KB Image download
Figure 4. 83KB Image download
Figure 3. 102KB Image download
Figure 2. 40KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Latrasse A: Fruits. In Volatile compounds in foods and beverages. Edited by Maarse H. New York, NY: Marcel-Decker; 1991:329-387.
  • [2]Olbricht K, Grafe C, Weiss K, Ulrich D: Inheritance of aroma compounds in a model population of Fragaria × ananassa Duch. Plant Breeding 2008, 127(1):87-93.
  • [3]Schieberle P, Hofmann T: Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures. J Agric Food Chem 1997, 45(1):227-232.
  • [4]Carrasco B, Hancock J, Beaudry R, Retamales J: Chemical composition and inheritance patterns of aroma in Fragaria x ananassa and Fragaria virginiana progenies. Hort Sci 2005, 40(6):1649-1650.
  • [5]Bood KG, Zabetakis I: The biosynthesis of strawberry flavor (II): biosynthetic and molecular biology studies. J Food Sci 2002, 67(1):2-8.
  • [6]Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ: Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 2004, 16(11):3110-3131.
  • [7]Larsen M, Poll L: Odour thresholds of some important aroma compounds in strawberries. Z Lebensm Unters Forsch 1992, 195(2):120-123.
  • [8]Pérez AG, Sanz C, Olías R, Olías JM: Lipoxygenase and hydroperoxide lyase activities in ripening strawberry fruits. J Agric Food Chem 1998, 47(1):249-253.
  • [9]Ulrich D, Komes D, Olbricht K, Hoberg E: Diversity of aroma patterns in wild and cultivated Fragaria accessions. Genet Resour Crop Evol 2007, 54(6):1185-1196.
  • [10]Watson R, Wright CJ, McBurney T, Taylor AJ, Linforth RST: Influence of harvest date and light integral on the development of strawberry flavour compounds. J Exp Bot 2002, 53(377):2121-2129.
  • [11]Pelayo-Zaldivar C, Ebeler SE, Kader AA: Cultivar and harvest date effects on flavor and other quality attributes of California strawberries. J Food Quality 2005, 28(2005):78-97.
  • [12]Olbricht K, Ulrich D, Weiss K, Grafe C: Variation in the amounts of selected volatiles in a model population of Fragaria x ananassa duch. As influenced by harvest year. J Agric Food Chem 2011, 59(3):944-952.
  • [13]Forney C, Kalt W, Jordan M: The composition of strawberry aroma is influenced by cultivar, maturity, and storage. Hort Sci 2000, 35(6):1022-1026.
  • [14]Larsen M, Poll L, Olsen CE: Evaluation of the aroma composition of some strawberry (Fragaria × ananassa Duch) cultivars by use of odour threshold values. Z Lebensm Unters Forsch 1992, 195(6):536-539.
  • [15]Jouquand C, Chandler C, Plotto A, Goodner K: A sensory and chemical analysis of fresh strawberries over harvest dates and seasons reveals factors that affect eating quality. J Am Soc Hortic Sci 2008, 133(6):859-867.
  • [16]Zorrilla-Fontanesi Y, Rambla JLL, Cabeza A, Medina JJ, Sánchez-Sevilla JF, Valpuesta V, Botella MA, Granell A, Amaya I: Genetic analysis of strawberry fruit aroma and identification of O-methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. Plant Physiol 2012, 159(2):851-870.
  • [17]Akhunov E, Nicolet C, Dvorak J: Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 2009, 119(3):507-517.
  • [18]Oliver RE, Lazo GR, Lutz JD, Rubenfield MJ, Tinker NA, Anderson JM, Morehead NHW, Adhikary D, Jellen EN, Maughan PJ: Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology. BMC Genomics 2011, 12(1):77. BioMed Central Full Text
  • [19]Trick M, Long Y, Meng J, Bancroft I: Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 2009, 7(4):334-346.
  • [20]Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M: Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 2010, 152(4):1787-1795.
  • [21]Sánchez G, Venegas-Calerón M, Salas JJ, Monforte A, Badenes ML, Granell A: An integrative “omics” approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics 2013, 14(1):343. BioMed Central Full Text
  • [22]Schrader J, Etschmann M, Sell D, Hilmer J-M, Rabenhorst J: Applied biocatalysis for the synthesis of natural flavour compounds–current industrial processes and future prospects. Biotechnol Lett 2004, 26(6):463-472.
  • [23]Hagedorn S, Kaphammer B: Microbial biocatalysis in the generation of flavor and fragrance chemicals. Annu Rev Microbiol 1994, 48(1):773-800.
  • [24]Romero-Guido C, Belo I, Ta TMN, Cao-Hoang L, Alchihab M, Gomes N, Thonart P, Teixeira JA, Destain J, Waché Y: Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds. Appl Microbiol Biotechnol 2011, 89(3):535-547.
  • [25]Schöttler M, Boland W: Biosynthesis of dodecano-4-lactone in ripening fruits: Crucial role of an epoxide-hydrolase in enantioselective generation of aroma components of the nectarine (Prunus persica var. nucipersica) and the strawberry (Fragaria ananassa). Helv Chim Acta 1996, 79(5):1488-1496.
  • [26]Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJ, Williams KP, Holt SH, Ruiz Rojas JJ, Chatterjee M, et al.: The genome of woodland strawberry (Fragaria vesca). Nat Genet 2011, 43(2):109-116.
  • [27]Folta KM, Dhingra A, Howard L, Stewart PJ, Chandler CK: Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation. Planta 2006, 224(5):1058-1067.
  • [28]Tieman D, Bliss P, McIntyre L, Blandon-Ubeda A, Bies D, Odabasi A, Rodriguez G, van der Knaap E, Taylor M, Goulet C, Mageroy MH, Snyder DJ, Colquhoun TA, Moskowitz H, Clark DG, Sims C, Bartoshuk L, Klee HJ: The chemical interactions underlying tomato flavor preferences. Curr Biol 2012, 22(11):1035-1039.
  • [29]Schwieterman ML, Colquhoun TA, Bartoshuk L, Jaworski EA, Gilbert JL, Tieman DM, Odabasi AZ, Moskowitz HR, Folta KM, Klee HJ, Sims CA, Whitaker VM, Clark DG: Strawberry flavor: diverse chemical recipes, a seasonal influence and their effect on sensory perception. PLoS One 2014, 9(2):e88446.
  • [30]Blin-Perrin C, Molle D, Dufosse L, Le-Quere J, Viel C, Mauvais G, Feron G: Metabolism of ricinoleic acid into gamma-decalactone: beta-oxidation and long chain acyl intermediates of ricinoleic acid in the genus Sporidiobolus sp. FEMS Microbiol Lett 2000, 188(1):69-74.
  • [31]Chandler CK, Santos BM, Peres NA, Jouquand C, Plotto A: Florida Elyana’ strawberry. Hort Sci 2009, 44(6):1775-1776.
  • [32]Aharoni A, Keizer LC, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen AM, de Vos RC, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell AP: Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 2000, 12(5):647-662.
  • [33]Bombarely A, Merchante C, Csukasi F, Cruz-Rus E, Caballero JL, Medina-Escobar N, Blanco-Portales R, Botella MA, Muñoz-Blanco J, Sánchez-Sevilla JF, Valpuesta V: Generation and analysis of ESTs from strawberry (Fragaria x ananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics 2010, 11:503. BioMed Central Full Text
  • [34]Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, Liu Z: Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell Online 2013, 25(6):1960-1978.
  • [35]Ashley MV, Wilk JA, Styan SM, Craft KJ, Jones KL, Feldheim KA, Lewers KS, Ashman TL: High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae). Theor Appl Genet 2003, 107(7):1201-1207.
  • [36]Sánchez G, Besada C, Badenes ML, Monforte AJ, Granell A: A non-targeted approach unravels the volatile network in peach fruit. PLoS One 2012, 7(6):e38992.
  • [37]Monfort A, Vilanova S, Davis T, Arús P: A new set of polymorphic simple sequence repeat (SSR) markers from a wild strawberry (Fragaria vesca) are transferable to other diploid Fragaria species and to Fragaria × ananassa. Mol Ecol Notes 2006, 6(1):197-200.
  • [38]Brunings A, Moyer C, Peres N, Folta KM: Implementation of simple sequence repeat markers to genotype Florida strawberry varieties. Euphytica 2010, 173(1):63-75.
  • [39]Chambers A, Carle S, Njuguna W, Chamala S, Bassil N, Whitaker VM, Barbazuk WB, Folta KM: A genome-enabled, high-throughput, and multiplexed fingerprinting platform for strawberry (Fragaria L.). Mol Breed 2013, 31(3):1-15.
  • [40]Chambers A, Whitaker VM, Gibbs B, Plotto A, Folta KM: Detection of the linalool‒producing NES1 variant across diverse strawberry (Fragaria spp.) accessions. Plant Breed 2012, 131(3):437-443.
  • [41]Chang S, Puryear J, Cairney J: A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 1993, 11(2):113-116.
  • [42]Clancy MA, Rosli HG, Chamala S, Barbazuk WB, Civello PM, Folta KM: Validation of reference transcripts in strawberry (Fragaria spp.). Mol Genet Genomics 2013, 288(12):671-681.
  • [43]Rousseau-Gueutin M, Lerceteau-Köhler E, Barrot L, Sargent DJ, Monfort A, Simpson D, Arus P, Guérin G, Denoyes-Rothan B: Comparative genetic mapping between octoploid and diploid Fragaria species reveals a high level of colinearity between their genomes and the essentially disomic behavior of the cultivated octoploid strawberry. Genetics 2008, 179(4):2045-2060.
  • [44]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132(3):365-386.
  文献评价指标  
  下载次数:149次 浏览次数:34次