期刊论文详细信息
BMC Research Notes
Surface plasmon resonance imaging of pathogens: the Yersinia pestis paradigm
Eric Chabrière1  Michel Drancourt1  Gérard Aboudharam1  Jérome Terras1  Guillaume Gotthard1  Hong T T Huynh1 
[1] Faculté de médecine, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UMR CNRS 7278, IRD 198, INSERM 1095, 27, Boulevard Jean Moulin-Cedex 5, Marseille, France
关键词: Detection;    Plague;    Yersinia pestis;    Surface plasmon resonance imaging;   
Others  :  1231709
DOI  :  10.1186/s13104-015-1236-3
 received in 2014-09-04, accepted in 2015-06-17,  发布年份 2015
【 摘 要 】

Background

Yersinia pestis, causing deadly plague, is classified as a group A bioterrorism bacterium. Some recent DNA-based methods were used for detection of bioterrorism agents.

Results

Y. pestis was used as a model organism to develop an immunosensor based on surface plasmon resonance imaging (SPRi) using monoclonal antibody against Y. pestis F1 antigen. The experimental approach included step-by-step detection of Y. pestis membrane proteins, lysed bacteria, intact bacteria, mock-infected powder and mock-infected clinical specimens. SPRi detected on average 10 6intact Y. pestis organisms in buffer, in mock-infected powder and in a 1:4 mixture with HEL cells.

Conclusions

This study offers the proof-of-concept of the SPRi-based detection of a human pathogen in both environmental and clinical specimens.

【 授权许可】

   
2015 Huynh et al.

附件列表
Files Size Format View
Figure6. 19KB Image download
Figure5. 28KB Image download
Figure4. 51KB Image download
Figure3. 24KB Image download
Figure2. 22KB Image download
Figure1. 29KB Image download
Figure6. 19KB Image download
Figure5. 28KB Image download
Figure4. 51KB Image download
Figure3. 24KB Image download
Figure2. 22KB Image download
Figure1. 29KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

【 参考文献 】
  • [1]Raoult D, Mouffok N, Bitam I, Piarroux R, Drancourt M: Plague: history and contemporary analysis. J Infect 2013, 66:18-26.
  • [2]Neerinckx SB, Peterson AT, Gulinck H, Deckers J, Leirs H: Geographic distribution and ecological niche of plague in sub-Saharan Africa. Int J Health Geogr 2008, 7:54. BioMed Central Full Text
  • [3]Bertherat E, Bekhoucha S, Chougrani S, Razik F, Duchemin JB, Houti L, et al.: Plague reappearance in Algeria after 50 years, 2003. Emerg Infect Dis 2007, 13:1459-1462.
  • [4]Bitam I, Ayyadurai S, Kernif T, Chetta M, Boulaghman N, Raoult D, et al.: New rural focus of plague, Algeria. Emerg Infect Dis 2010, 16:1639-1640.
  • [5]Riedel S: Biological warfare and bioterrorism: a historical review. Proc (Bayl Univ Med Cent) 2004, 17:400-406.
  • [6]Bearden SW, Perry RD (2008) Laboratory maintenance and characterization of Yersinia pestis. In: Current protocols in microbiology. Chapter 5. Wiley, New York
  • [7]Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D: Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc Natl Acad Sci USA 1998, 95:12637-12640.
  • [8]Janse I, Hamidjaja RA, Reusken C: Yersinia pestis plasminogen activator gene homolog in rat tissues. Emerg Infect Dis 2013, 19:342-344.
  • [9]Bianucci R, Rahalison L, Massa ER, Peluso A, Ferroglio E, Signoli M: Technical note: a rapid diagnostic test detects plague in ancient human remains: an example of the interaction between archeological and biological approaches (southeastern France, 16th–18th centuries). Am J Phys Anthropol 2008, 136:361-367.
  • [10]Chanteau S, Rahalison L, Ralafiarisoa L, Foulon J, Ratsitorahina M, Ratsifasoamanana L, et al.: Development and testing of a rapid diagnostic test for bubonic and pneumonic plague. Lancet 2003, 361:211-216.
  • [11]Rajerison M, Dartevelle S, Ralafiarisoa LA, Bitam I, Dinh TN, Andrianaivoarimanana V, et al.: Development and evaluation of two simple, rapid immunochromatographic tests for the detection of Yersinia pestis antibodies in humans and reservoirs. PLoS Negl Trop Dis 2009, 3:e421.
  • [12]Jeng K, Hardick J, Rothman R, Yang S, Won H, Peterson S, et al.: Reverse transcription-PCR–electrospray ionization mass spectrometry for rapid detection of biothreat and common respiratory pathogens. J Clin Microbiol 2013, 51:3300-3307.
  • [13]Schweighardt AJ, Battaglia A, Wallace MM: Detection of anthrax and other pathogens using a unique liquid array technology. J Forensic Sci 2014, 59:15-33.
  • [14]Kato K, Ishimuro T, Arima Y, Hirata I, Iwata H: High-throughput immunophenotyping by surface plasmon resonance imaging. Anal Chem 2007, 79:8616-8623.
  • [15]Cherif B, Roget A, Villiers CL, Calemczuk R, Leroy V, Marche PN, et al.: Clinically related protein-peptide interactions monitored in real time on novel peptide chips by surface plasmon resonance imaging. Clin Chem 2006, 52:255-262.
  • [16]Puttharugsa C, Wangkam T, Huangkamhang N, Gajanandana O, Himananto O, Sutapun B, et al.: Development of surface plasmon resonance imaging for detection of Acidovorax avenae subsp. citrulli (Aac) using specific monoclonal antibody. Biosens Bioelectron 2011, 26:2341-2346.
  • [17]Gutierrez-Gallego R, Bosch J, Such-Sanmartin G, Segura J: Surface plasmon resonance immuno assays—a perspective. Growth Horm IGF Res 2009, 19:388-398.
  • [18]Lathem WW, Crosby SD, Miller VL, Goldman WE: Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci USA 2005, 102:17786-17791.
  • [19]Mondani L, Roupioz Y, Delannoy S, Fach P, Livache T: Simultaneous enrichment and optical detection of low levels of stressed Escherichia coli O157:H7 in food matrices. J Appl Microbiol 2014, 117:537-546.
  • [20]Malou N, Tran TN, Nappez C, Signoli M, Le Forestier C, Castex D, et al.: Immuno-PCR—a new tool for paleomicrobiology: the plague paradigm. PLoS One 2012, 7:e31744.
  文献评价指标  
  下载次数:107次 浏览次数:31次