期刊论文详细信息
BMC Cancer
A prospective observational study of Gallium-68 ventilation and perfusion PET/CT during and after radiotherapy in patients with non-small cell lung cancer
Shankar Siva1  Jason Callahan2  Tomas Kron2  Olga A Martin2  Michael P MacManus1  David L Ball1  Rodney J Hicks3  Michael S Hofman3 
[1] Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 8006, Australia
[2] Division of Radiation Oncology and Cancer Imaging, St Andrews Place, East Melbourne 3002, Australia
[3] Department of Medicine, The University of Melbourne, Parkville 8006, Australia
关键词: Inflammatory cytokines;    Gamma-H2AX;    Biomarkers;    Biological dose escalation;    Adaptive radiotherapy;    4D;    Lung cancer;    Definitive radiation;    Positron emission tomography;   
Others  :  1121000
DOI  :  10.1186/1471-2407-14-740
 received in 2014-06-21, accepted in 2014-09-25,  发布年份 2014
PDF
【 摘 要 】

Background

Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancers, and is the leading cause of cancer deaths. Radiation therapy (RT), alone or in combination with chemotherapy, is the standard of care for curative intent treatment of patients with locally advanced or inoperable NSCLC. The ability to intensify treatment to achieve a better chance for cure is limited by the risk of injury to the surrounding lung.

Methods/Design

This is a prospective observational study of 60 patients with NSCLC receiving curative intent RT. Independent human ethics board approval was received from the Peter MacCallum Cancer Centre ethics committee. In this research, Galligas and Gallium-68 macroaggregated albumin (MAA) positron emission tomography (PET) imaging will be used to measure ventilation (V) and perfusion (Q) in the lungs. This is combined with computed tomography (CT) and both performed with a four dimensional (4D) technique that tracks respiratory motion. This state-of-the-art scan has superior resolution, accuracy and quantitative ability than previous techniques. The primary objective of this research is to observe changes in ventilation and perfusion secondary to RT as measured by 4D V/Q PET/CT. Additionally, we plan to model personalised RT plans based on an individual’s lung capacity. Increasing radiation delivery through areas of poorly functioning lung may enable delivery of larger, more effective doses to tumours without increasing toxicity. By performing a second 4D V/Q PET/CT scan during treatment, we plan to simulate biologically adapted RT depending on the individual’s accumulated radiation injury. Tertiary aims of the study are assess the prognostic significance of a novel combination of clinical, imaging and serum biomarkers in predicting for the risk of lung toxicity. These biomarkers include spirometry, 18 F-Fluorodeoxyglucose PET/CT, gamma-H2AX signals in hair and lymphocytes, as well as assessment of blood cytokines.

Discussion

By correlating these biomarkers to toxicity outcomes, we aim to identify those patients early who will not tolerate RT intensification during treatment. This research is an essential step leading towards the design of future biologically adapted radiotherapy strategies to mitigate the risk of lung injury during dose escalation for patients with locally advanced lung cancer.

Trials registration

Universal Trial Number (UTN) U1111-1138-4421.

【 授权许可】

   
2014 Siva et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150211013327933.pdf 2594KB PDF download
Figure 3. 57KB Image download
Figure 2. 109KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Auperin A, Le Pechoux C, Rolland E, Curran WJ, Furuse K, Fournel P, Belderbos J, Clamon G, Ulutin HC, Paulus R, Yamanaka T, Bozonnat MC, Uitterhoeve A, Wang X, Stewart L, Arriagada R, Burdett S, Pignon JP: Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 2010, 28(13):2181-2190.
  • [2]Fay M, Tan A, Fisher R, Mac Manus M, Wirth A, Ball D: Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 2005, 61(5):1355-1363.
  • [3]Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, Bradley JD, Kim TH, Ramella S, Marks LB, De Petris L, Stitt L, Rodrigues G: Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys 2013, 85(2):444-450.
  • [4]Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, Perez CA: Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 1999, 45(2):323-329.
  • [5]Bradley JD, Paulus R, Komaki R, Masters GA, Forster K, Schild SE, Bogart J, Garces YI, Narayan S, Kavadi V: A randomized phase III comparison of standard-dose (60 Gy) versus high-dose (74 Gy) conformal chemoradiotherapy with or without cetuximab for stage III non-small cell lung cancer: Results on radiation dose in RTOG 0617. J Clin Oncol 2013, 31:7501.
  • [6]Guckenberger M, Kestin LL, Hope AJ, Belderbos J, Werner-Wasik M, Yan D, Sonke JJ, Bissonnette JP, Wilbert J, Xiao Y: Is there a lower limit of pretreatment pulmonary function for safe and effective stereotactic body radiotherapy for early-stage non-small cell lung cancer? J Thorac Oncol 2012, 7(3):542.
  • [7]Seppenwoolde Y, Lebesque JV: Partial irradiation of the lung. In Seminars in Radiation Oncology. ᅟ: Elsevier; 2001:247-258.
  • [8]Curran WJ Jr, Moldofsky PJ, Solin LJ: Observations on the predictive value of perfusion lung scans on post-irradiation pulmonary function among 210 patients with bronchogenic carcinoma. Int J Radiat Oncol Biol Phys 1992, 24(1):31-36.
  • [9]Boersma L, Damen E, De Boer R, Muller S, Olmos R, Van Zandwijk N, Lebesque J: Estimation of overall pulmonary function after irradiation using dose-effect relations for local functional injury. Radiother Oncol 1995, 36(1):15-23.
  • [10]Theuws J, Kwa S, Wagenaar A, Boersma L, Damen E, Muller S, Baas P, Lebesque J: Dose-effect relations for early local pulmonary injury after irradiation for malignant lymphoma and breast cancer. Radiother Oncol 1998, 48(1):33-43.
  • [11]Theuws J, Kwa SLS, Wagenaar AC, Seppenwoolde Y, Boersma LJ, Damen EMF, Muller SH, Baas P, Lebesque JV: Prediction of overall pulmonary function loss in relation to the 3-D dose distribution for patients with breast cancer and malignant lymphoma. Radiother Oncol 1998, 49(3):233-243.
  • [12]Gergel TJ, Leichman L, Nava HR, Blumenson LE, Loewen GM, Gibbs JF, Khushalani NI, Leichman CG, Bodnar LM, Douglass HO: Effect of concurrent radiation therapy and chemotherapy on pulmonary function in patients with esophageal cancer: dose-volume histogram analysis. The Cancer Journal 2002, 8(6):451.
  • [13]Marks LB, Hollis D, Munley M, Bentel G, Garipagaoglu M, Fan M, Poulson J, Clough R, Sibley G, Coleman RE: The role of lung perfusion imaging in predicting the direction of radiation induced changes in pulmonary function tests. Cancer 2000, 88(9):2135-2141.
  • [14]Choi NC, Kanarek DJ, Kazemi H: Physiologic changes in pulmonary function after thoracic radiotherapy for patients with lung cancer and role of regional pulmonary function studies in predicting postradiotherapy pulmonary function before radiotherapy. In: 1985, 1985:119-130.
  • [15]Hill R: Radiation effects on the respiratory system. Brit J Radiol 2005, 1:75-81.
  • [16]Roach PJ, Bailey DL, Harris BE: Enhancing lung scintigraphy with single-photon emission computed tomography. In Seminars in Nuclear Medicine: 2008. ᅟ: Elsevier; 2008:441-449. doi:10.1053/j.semnuclmed.2008.06.002
  • [17]Jögi J, Jonson B, Ekberg M, Bajc M: Ventilation–Perfusion SPECT with 99mTc-DTPA Versus Technegas: A Head-to-Head Study in Obstructive and Nonobstructive Disease. J Nucl Med 2010, 51(5):735-741.
  • [18]Gutte H, Mortensen J, Jensen CV, Von Der Recke P, Petersen CL, Kristoffersen US, Kjaer A: Comparison of V/Q SPECT and planar V/Q lung scintigraphy in diagnosing acute pulmonary embolism. Nucl Med Commun 2010, 31(1):82-86.
  • [19]Roach PJ, Bailey DL, Schembri GP, Thomas PA: Transition from planar to SPECT V/Q scintigraphy: rationale, practicalities, and challenges. In Seminars in Nuclear Medicine. ᅟ: Elsevier; 2010:397-407. doi:10.1053/j.semnuclmed.2010.07.004
  • [20]Roach PJ, Gradinscak DJ, Schembri GP, Bailey EA, Willowson KP, Bailey DL: SPECT/CT in V/Q Scanning. In Seminars in Nuclear Medicine: 2010. ᅟ: Elsevier; 2010:455-466. doi:10.1053/j.semnuclmed.2010.07.005
  • [21]Christian JA, Partridge M, Nioutsikou E, Cook G, McNair HA, Cronin B, Courbon F, Bedford JL, Brada M: The incorporation of SPECT functional lung imaging into inverse radiotherapy planning for non-small cell lung cancer. Radiother Oncol 2005, 77(3):271-277.
  • [22]Lavrenkov K, Christian JA, Partridge M, Niotsikou E, Cook G, Parker M, Bedford JL, Brada M: A potential to reduce pulmonary toxicity: The use of perfusion SPECT with IMRT for functional lung avoidance in radiotherapy of non-small cell lung cancer. Radiother Oncol 2007, 83(2):156-162.
  • [23]Seppenwoolde Y, Engelsman M, De Jaeger K, Muller SH, Baas P, McShan DL, Fraass BA, Kessler ML, Belderbos JSA, Boersma LJ, Lebesque JV: Optimizing radiation treatment plans for lung cancer using lung perfusion information. Radiother Oncol 2002, 63(2):165-177.
  • [24]Hicks RJ, Hofman MS: Is there still a role for SPECT–CT in oncology in the PET–CT era? Nat Rev Clin Oncol 2012, ᅟ:ᅟ. doi:10.1038/nrclinonc.2012.188
  • [25]Mathias CJ, Green MA: A convenient route to [68Ga] Ga-MAA for use as a particulate PET perfusion tracer. Appl Radiat Isot 2008, 66(12):1910-1912.
  • [26]Hofman MS, Beauregard JM, Barber TW, Neels OC, Eu P, Hicks RJ: 68Ga PET/CT Ventilation–Perfusion Imaging for Pulmonary Embolism: A Pilot Study with Comparison to Conventional Scintigraphy. J Nucl Med 2011, 52(10):1513-1519.
  • [27]Callahan J, Hofman MS, Siva S, Kron T, Schneider ME, Binns D, Eu P, Hicks RJ: High-resolution imaging of pulmonary ventilation and perfusion with 68Ga-VQ respiratory gated (4-D) PET/CT. Eur J Nucl Med Mol Imaging 2014, 41:343-349.
  • [28]Hofman MS, Callahan J, Eu P, Hicks RJ: Segmental hyperperfusion in lobar pneumonia visualized with respiratory-gated four-dimensional pulmonary perfusion positron emission tomography-computed tomography. Am J Respir Crit Care Med 2014, 189(1):104-105.
  • [29]Provatopoulou X, Athanasiou E, Gounaris A: Predictive markers of radiation pneumonitis. Anticancer Res 2008, 28(4C):2421-2432.
  • [30]McBride WH, Chiang C-S, Olson JL, Wang C-C, Hong J-H, Pajonk F, Dougherty GJ, Iwamoto KS, Pervan M, Liao Y-P: A Sense of Danger from Radiation 1. Radiat Res 2004, 162(1):1-19.
  • [31]Johnston CJ, Williams JP, Okunieff P, Finkelstein JN: Radiation-induced pulmonary fibrosis: examination of chemokine and chemokine receptor families. Radiat Res 2002, 157(3):256-265.
  • [32]Thomson AW, Lotze MT: The Cytokine Handbook: Two-Volume Set. ᅟ: Gulf Professional Publishing; 2003.
  • [33]Ding N-H, Li JJ, Sun L-Q: Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis. Curr Drug Targets 2013, 14:1247.
  • [34]Desai S, Kumar A, Laskar S, Pandey B: Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells. Cytokine 2013, 61(1):54-62.
  • [35]Fu X-L, Huang H, Bentel G, Clough R, Jirtle RL, Kong F-M, Marks LB, Anscher MS: Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V< sub> 30 and transforming growth factor β. Int J Radiat Oncol Biol Phys 2001, 50(4):899-908.
  • [36]Anscher MS, Murase T, Prescott DM, Marks LB, Reisenbichler H, Bentel GC, Spencer D, Sherouse G, Jirtle RL: Changes in plasma TGF [beta] levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys 1994, 30(3):671-676.
  • [37]Anscher MS, Kong F-M, Andrews K, Clough R, Marks LB, Bentel G, Jirtle RL: Plasma transforming growth factor β1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 1998, 41(5):1029-1035.
  • [38]Zhao L, Wang L, Ji W, Wang X, Zhu X, Hayman JA, Kalemkerian GP, Yang W, Brenner D, Lawrence TS, Kong FM: Elevation of plasma TGF-β1 during radiation therapy predicts radiation-induced lung toxicity in patients with non-small-cell lung cancer: a combined analysis from Beijing and Michigan. Int J Radiat Oncol Biol Phys 2009, 74(5):1385-1390.
  • [39]Arpin D, Perol D, Blay J-Y, Falchero L, Claude L, Vuillermoz-Blas S, Martel-Lafay I, Ginestet C, Alberti L, Nosov D: Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis. J Clin Oncol 2005, 23(34):8748-8756.
  • [40]Chen Y, Rubin P, Williams J, Hernady E, Smudzin T, Okunieff P: Circulating IL-6 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 2001, 49(3):641-648.
  • [41]Crohns M, Saarelainen S, Laine S, Poussa T, Alho H, Kellokumpu-Lehtinen P: Cytokines in bronchoalveolar lavage fluid and serum of lung cancer patients during radiotherapy—association of interleukin-8 and VEGF with survival. Cytokine 2010, 50(1):30-36.
  • [42]Rübe CE, Palm J, Erren M, Fleckenstein J, König J, Remberger K, Rübe C: Cytokine plasma levels: reliable predictors for radiation pneumonitis? PLoS One 2008, 3(8):e2898.
  • [43]Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y: gammaH2AX and cancer. Nat Rev Cancer 2008, 8(12):957-967.
  • [44]Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM: A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000, 10(15):886-895.
  • [45]Sedelnikova OA, Horikawa I, Redon C, Nakamura A, Zimonjic DB, Popescu NC, Bonner WM: Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell 2008, 7(1):89-100.
  • [46]Redon CE, Dickey JS, Bonner WM, Sedelnikova OA: gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res 2009, 43(8):1171-1178.
  • [47]Lobrich M, Rief N, Kuhne M, Heckmann M, Fleckenstein J, Rube C, Uder M: In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci U S A 2005, 102(25):8984-8989.
  • [48]Olive PL, Banath JP: Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys 2004, 58(2):331-335.
  • [49]Redon CE, Dickey JS, Bonner WM, Sedelnikova OA: [gamma]-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res 2009, 43(8):1171-1178.
  • [50]Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM: The use of gamma-H2AX as a biodosimeter for total-body radiation exposure in non-human primates. PLoS One 2010, 5(11):e15544. doi:10.1371/journal.pone.0015544
  • [51]Little MP, Gola A, Tzoulaki I: A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure. PLoS Comput Biol 2009, 5(10):e1000539.
  • [52]Kaminski JM, Shinohara E, Summers JB, Niermann KJ, Morimoto A, Brousal J: The controversial abscopal effect. Cancer Treat Rev 2005, 31(3):159-172.
  • [53]Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. Nature 2008, 454(7203):436-444.
  • [54]Brar SS, Corbin Z, Kennedy TP, Hemendinger R, Thornton L, Bommarius B, Arnold RS, Whorton AR, Sturrock AB, Huecksteadt TP: NOX5 NAD (P) H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. American Journal of Physiology-Cell Physiology 2003, 285(2):C353-C369.
  • [55]De Bont R, van Larebeke N: Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 2004, 19(3):169.
  • [56]Nowsheen S, Wukovich RL, Aziz K, Kalogerinis PT, Richardson CC, Panayiotidis MI, Bonner WM, Sedelnikova OA, Georgakilas AG: Accumulation of oxidatively induced clustered DNA lesions in human tumor tissues. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2009, 674(1–2):131-136.
  • [57]Hussain SP, Hofseth LJ, Harris CC: Radical causes of cancer. Nat Rev Cancer 2003, 3(4):276-285.
  • [58]Jüngst C, Cheng B, Gehrke R, Schmitz V, Nischalke HD, Ramakers J, Schramel P, Schirmacher P, Sauerbruch T, Caselmann WH: Oxidative damage is increased in human liver tissue adjacent to hepatocellular carcinoma. Hepatology 2004, 39(6):1663-1672.
  • [59]Bradley JD, Paulus R, Komaki R, Masters GA, Forster K, Schild SE, Bogart J, Garces YI, Narayan S, Kavadi V: A randomized phase III comparison of standard-dose (60 Gy) versus high-dose (74 Gy) conformal chemoradiotherapy with or without cetuximab for stage III non-small cell lung cancer: Results on radiation dose in RTOG 0617. J Clin Oncol 2013, 31(15):7501.
  文献评价指标  
  下载次数:37次 浏览次数:13次