期刊论文详细信息
BMC Medical Genetics
Genetic associations of Nrf2-encoding NFE2L2 variants with Parkinson’s disease – a multicenter study
Henrik Zetterberg7  Staffan Nilsson8  Ola Hammarsten9  Michael Nilsson1,13  Christine Klein5  Hans Nissbrandt1,10  Monika Bialecka6  Marek Drozdzik6  Stephanie Bezzina Wettinger1,12  Peter Söderkvist2  Grazia Annesi3  Elvira Valeria De Marco1  Aldo Quattrone4  Petra Bergström1,11  Malin von Otter1,11 
[1] Institute of Neurological Sciences, National Research Council, Cosenza, Italy;Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, SE-581 85, Sweden;Institute of Molecular Bioimaging and Physiology, Section of Germaneto, National Research Council, Catanzaro, Italy;Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy;Institute of Neurogenetics, University of Luebeck, Luebeck, Germany;Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp. 72, Szczecin 70-111, Poland;UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK;Institute of Mathematical Sciences, Department of Mathematical Statistics, Chalmers University of Technology, Chalmers tvärgata 3, Gothenburg, 412 96, Sweden;Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, The Sahlgrenska Academy at the University of Gothenburg, Bruna Stråket 16, Gothenburg, 413 45, Sweden;Institute of Neuroscience and Physiology, Department of Pharmacology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 405 30, Sweden;Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Blå stråket 15, Gothenburg, 413 45, Sweden;Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta;Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
关键词: Risk factor;    Haplotype;    SNP;    Multicenter;    Meta-analysis;    NFE2L2;    Nrf2;    PD;    Parkinson’s disease;   
Others  :  1090088
DOI  :  10.1186/s12881-014-0131-4
 received in 2014-08-26, accepted in 2014-12-01,  发布年份 2014
PDF
【 摘 要 】

Background

The transcription factor Nrf2, encoded by the NFE2L2 gene, is an important regulator of the cellular protection against oxidative stress. Parkinson’s disease is a neurodegenerative disease highly associated with oxidative stress. In a previously published study, we reported associations of NFE2L2 haplotypes with risk and age at onset of idiopathic Parkinson’s disease in a Swedish discovery material and a Polish replication material. Here, we have extended the replication study and performed meta-analyses including the Polish material and four new independent European patient-control materials. Furthermore, all SNPs included in the haplotype windows were investigated individually for associations with Parkinson’s disease in meta-analyses including all six materials.

Methods

Totally 1038 patients and 1600 control subjects were studied. Based on previous NFE2L2 haplotype associations with Parkinson’s disease, five NFE2L2 tag SNPs were genotyped by allelic discrimination and three functional NFE2L2 promoter SNPs were genotyped by sequencing. The impact of individual SNPs and haplotypes on risk and age at onset of Parkinson’s disease were investigated in each material individually and in meta-analyses of the obtained results.

Results

Meta-analyses of NFE2L2 haplotypes showed association of haplotype GAGCAAAA, including the fully functional promoter haplotype AGC, with decreased risk (OR = 0.8 per allele, p = 0.012) and delayed onset (+1.1 years per allele, p = 0.048) of Parkinson’s disease. These results support the previously observed protective effect of this haplotype in the first study. Further, meta-analyses of the SNPs included in the haplotypes revealed four NFE2L2 SNPs associated with age at onset of Parkinson’s disease (rs7557529 G > A, −1.0 years per allele, p = 0.042; rs35652124 A > G, −1.1 years per allele, p = 0.045; rs2886161 A > G, −1.2 years per allele, p = 0.021; rs1806649 G > A, +1.2 years per allele, p = 0.029). One of these (rs35652124) is a functional SNP located in the NFE2L2 promoter. No individual SNP was associated with risk of Parkinson’s disease.

Conclusion

Our results support the hypothesis that variation in the NFE2L2 gene, encoding a central protein in the cellular protection against oxidative stress, may contribute to the pathogenesis of Parkinson’s disease. Functional studies are now needed to explore these results further.

【 授权许可】

   
2014 von Otter et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128154010938.pdf 417KB PDF download
Figure 2. 23KB Image download
Figure 1. 32KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Lees AJ, Hardy J, Revesz T: Parkinson’s disease. Lancet 2009, 373(9680):2055-2066.
  • [2]Zhou C, Huang Y, Przedborski S: Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 2008, 1147:93-104.
  • [3]Chinta SJ, Andersen JK: Redox imbalance in Parkinson’s disease. Biochim Biophys Acta 2008, 1780(11):1362-1367.
  • [4]Copple IM, Goldring CE, Kitteringham NR, Park BK: The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Toxicology 2008, 246(1):24-33.
  • [5]Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999, 13(1):76-86.
  • [6]Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA: The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 2004, 24(19):8477-8486.
  • [7]Furukawa M, Xiong Y: BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 2005, 25(1):162-171.
  • [8]Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997, 236(2):313-322.
  • [9]Magesh S, Chen Y, Hu L: Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev 2012, 32(4):687-726.
  • [10]Kumar H, Koppula S, Kim IS, More SV, Kim BW, Choi DK: Nuclear factor erythroid 2-related factor 2 signaling in Parkinson disease: a promising multi therapeutic target against oxidative stress, neuroinflammation and cell death. CNS & neurological disorders drug targets 2012, 11(8):1015-1029.
  • [11]Yang Y, Jiang S, Yan J, Li Y, Xin Z, Lin Y, Qu Y: An overview of the molecular mechanisms and novel roles of Nrf2 in neurodegenerative disorders.Cytokine Growth Factor Rev 2014, Epub ahead of print.
  • [12]Cook AL, Vitale AM, Ravishankar S, Matigian N, Sutherland GT, Shan J, Sutharsan R, Perry C, Silburn PA, Mellick GD, Whitelaw ML, Wells CA, Mackay-Sim A, Wood SA: NRF2 activation restores disease related metabolic deficiencies in olfactory neurosphere-derived cells from patients with sporadic Parkinson’s disease. PLoS ONE 2011, 6(7):e21907.
  • [13]Meesarapee B, Thampithak A, Jaisin Y, Sanvarinda P, Suksamrarn A, Tuchinda P, Morales NP, Sanvarinda Y: Curcumin I mediates neuroprotective effect through attenuation of quinoprotein formation, p-p38 MAPK expression, and caspase-3 activation in 6-hydroxydopamine treated SH-SY5Y cells. Phytother Res 2014, 28(4):611-616.
  • [14]Kaidery NA, Banerjee R, Yang L, Smirnova NA, Hushpulian DM, Liby KT, Williams CR, Yamamoto M, Kensler TW, Ratan RR, Sporn MB, Beal MF, Gazaryan IG, Thomas B: Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson’s disease. Antioxidants & redox signaling 2013, 18(2):139-157.
  • [15]Wild AC, Moinova HR, Mulcahy RT: Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. The Journal of biological chemistry 1999, 274(47):33627-33636.
  • [16]Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL: Nrf2, a Cap‘n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. The Journal of biological chemistry 1999, 274(37):26071-26078.
  • [17]Chen K, Gunter K, Maines MD: Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J Neurochem 2000, 75(1):304-313.
  • [18]Venugopal R, Jaiswal AK: Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci U S A 1996, 93(25):14960-14965.
  • [19]Segura-Aguilar J, Lind C: On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chem Biol Interact 1989, 72(3):309-324.
  • [20]van Muiswinkel FL, de Vos RA, Bol JG, Andringa G, Jansen Steur EN, Ross D, Siegel D, Drukarch B: Expression of NAD(P)H:quinone oxidoreductase in the normal and Parkinsonian substantia nigra. Neurobiol Aging 2004, 25(9):1253-1262.
  • [21]Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, Jordan-Sciutto KL: Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 2007, 66(1):75-85.
  • [22]Imaizumi Y, Okada Y, Akamatsu W, Koike M, Kuzumaki N, Hayakawa H, Nihira T, Kobayashi T, Ohyama M, Sato S, Takanashi M, Funayama M, Hirayama A, Soga T, Hishiki T, Suematsu M, Yagi T, Ito D, Kosakai A, Hayashi K, Shouji M, Nakanishi A, Suzuki N, Mizuno Y, Mizushima N, Amagai M, Uchiyama Y, Mochizuki H, Hattori N, Okano H: Mitochondrial dysfunction associated with increased oxidative stress and alpha-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol Brain 2012, 5:35. BioMed Central Full Text
  • [23]von Otter M, Landgren S, Nilsson S, Celojevic D, Bergstrom P, Hakansson A, Nissbrandt H, Drozdzik M, Bialecka M, Kurzawski M, Blennow K, Nilsson M, Hammarsten O, Zetterberg H: Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson’s disease. BMC Med Genet 2010, 11:36. BioMed Central Full Text
  • [24]Marczak ED, Marzec J, Zeldin DC, Kleeberger SR, Brown NJ, Pretorius M, Lee CR: Polymorphisms in the transcription factor NRF2 and forearm vasodilator responses in humans. Pharmacogenet Genomics 2012, 22(8):620-628.
  • [25]Marzec JM, Christie JD, Reddy SP, Jedlicka AE, Vuong H, Lanken PN, Aplenc R, Yamamoto T, Yamamoto M, Cho HY, Kleeberger SR: Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. Faseb J 2007, 21(9):2237-2246.
  • [26]Bergman O, Hakansson A, Westberg L, Nordenstrom K, Carmine Belin A, Sydow O, Olson L, Holmberg B, Eriksson E, Nissbrandt H: PITX3 polymorphism is associated with early onset Parkinson’s disease. Neurobiol Aging 2010, 31(1):114-117.
  • [27]Westerlund M, Belin AC, Anvret A, Hakansson A, Nissbrandt H, Lind C, Sydow O, Olson L, Galter D: Cerebellar alpha-synuclein levels are decreased in Parkinson’s disease and do not correlate with SNCA polymorphisms associated with disease in a Swedish material. Faseb J 2008, 22(10):3509-3514.
  • [28]Dick FD, De Palma G, Ahmadi A, Scott NW, Prescott GJ, Bennett J, Semple S, Dick S, Counsell C, Mozzoni P, Haites N, Wettinger SB, Mutti A, Otelea M, Seaton A, Söderkvist P, Felice A: Geoparkinson study group: Environmental risk factors for Parkinson’s disease and parkinsonism: the Geoparkinson study. Occup Environ Med 2007, 64(10):666-672.
  • [29]International HapMap Consortium: The international HapMap project Nature 2003, 426(6968):789-796.
  • [30]Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics (Oxford, England) 2005, 21(2):263-265.
  • [31]Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D: The structure of haplotype blocks in the human genome. Science 2002, 296(5576):2225-2229.
  • [32]Livak KJ: Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 1999, 14(5–6):143-149.
  • [33]Altman DG: Practical statistics for medical research. Chapman and Hall, New York; 1991.
  • [34]Excoffier L, Slatkin M: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995, 12(5):921-927.
  • [35]Chen YC, Wu YR, Wu YC, Lee-Chen GJ, Chen CM: Genetic analysis of NFE2L2 promoter variation in Taiwanese Parkinson’s disease. Parkinsonism Relat Disord 2013, 19(2):247-250.
  • [36]Mizuta I, Satake W, Nakabayashi Y, Ito C, Suzuki S, Momose Y, Nagai Y, Oka A, Inoko H, Fukae J, Saito Y, Sawabe M, Murayama S, Yamamoto M, Hattori N, Murata M, Toda T: Multiple candidate gene analysis identifies alpha-synuclein as a susceptibility gene for sporadic Parkinson’s disease. Hum Mol Genet 2006, 15(7):1151-1158.
  • [37]Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA, Pant PV, Frazer KA, Cox DR, Ballinger DG: High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 2005, 77(5):685-693.
  文献评价指标  
  下载次数:20次 浏览次数:10次