期刊论文详细信息
BMC Microbiology
Analysis of a Clostridium difficile PCR ribotype 078 100 kilobase island reveals the presence of a novel transposon, Tn6164
Hans C van Leeuwen2  Ed J Kuijper2  Len J A Lipman3  Adam P Roberts4  Marjolein P Hensgens2  Céline Harmanus2  Michael S M Brouwer4  Dennis Bakker2  Jeroen Corver1 
[1] LUMC, Medical Microbiology, E4P, Postbus 9600, 2300 RC Leiden, The Netherlands;Department of Medical Microbiology, Section Experimental Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands;Division of Veterinary Public Health, Faculty of Veterinary Medicine, Institute of Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands;Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
关键词: Virulence;    Antimicrobial resistance;    Phage;    Transposable element;    Clostridium difficile;   
Others  :  1221841
DOI  :  10.1186/1471-2180-12-130
 received in 2012-04-04, accepted in 2012-06-25,  发布年份 2012
PDF
【 摘 要 】

Background

Clostridium difficile is the main cause of antibiotic associated diarrhea. In the past decade, the number of C. difficile patients has increased dramatically, coinciding with the emergence of two PCR ribotypes 027 and 078. PCR ribotype 078 is also frequently found during C. difficile outbreaks in pigfarms. Previously, the genome of the PCR ribotype 078 strain M120, a human isolate, was described to contain a unique insert of 100 kilobases.

Results

Analysis of this insert revealed over 90 open reading frames, encoding proteins originating from transposons, phages and plasmids. The insert was shown to be a transposon (Tn6164), as evidenced by the presence of an excised and circularised molecule, containing the ligated 5’and 3’ends of the insert. Transfer of the element could not be shown through filter-mating experiments. Whole genome sequencing of PCR ribotype 078 strain 31618, isolated from a diarrheic piglet, showed that Tn6164 was not present in this strain. To test the prevalence of Tn6164, a collection of 231 Clostridium difficile PCR ribotype 078 isolates from human (n = 173) and porcine (n = 58) origin was tested for the presence of this element by PCR. The transposon was present in 9 human, tetracycline resistant isolates, originating from various countries in Europe, and none of the pig strains. Nine other strains, also tetracycline resistant human isolates, contained half of the transposon, suggesting multiple insertion steps yielding the full Tn6164. Other PCR ribotypes (n = 66) were all negative for the presence of the transposon. Multi locus variable tandem repeat analysis revealed genetic relatedness among transposon containing isolates. Although the element contained several potential antibiotic resistance genes, it did not yield a readily distinguishable phenotype.

Conclusions

Tn6164 is a newly described transposon, occurring sporadically in C. difficile PCR ribotype 078 strains. Although no transfer of the element could be shown, we hypothesize that the element could serve as a reservoir of antibiotic resistance genes for other bacteria. Further research is needed to investigate the transfer capabilities of the element and to substantiate the possible role of Tn6164 as a source of antibiotic resistance genes for other gut pathogens.

【 授权许可】

   
2012 Corver et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804024728171.pdf 947KB PDF download
Figure 2. 86KB Image download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Pepin J, Valiquette L, Cossette B: Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 2005, 173:1037-1042.
  • [2]Goorhuis A, Debast SB, van Leengoed LA, Harmanus C, Notermans DW, Bergwerff AA, et al.: Clostridium difficile PCR ribotype 078: an emerging strain in humans and in pigs? J Clin Microbiol 2008, 46:1157.
  • [3]Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, et al.: Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction Type 078. Clin Infect Dis 2008, 47:1162-1170.
  • [4]Debast SB, van Leengoed LA, Goorhuis A, Harmanus C, Kuijper EJ, Bergwerff AA: Clostridium difficile PCR ribotype 078 toxinoType V found in diarrhoeal pigs identical to isolates from affected humans. Environ Microbiol 2009, 11:505-511.
  • [5]He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, et al.: Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci USA 2010, 107:7527-7532.
  • [6]Stabler RA, He M, Dawson L, Martin M, Valiente E, Corton C, et al.: Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 2009, 10:R102. BioMed Central Full Text
  • [7]Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, et al.: The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 2006, 38:779-786.
  • [8]Forgetta V, Oughton MT, Marquis P, Brukner I, Blanchette R, Haub K, et al.: Fourteen-Genome Comparison Identifies DNA Markers for Severe-Disease-Associated Strains of Clostridium difficile. J Clin Microbiol 2011, 49:2230-2238.
  • [9]Marsden GL, Davis IJ, Wright VJ, Sebaihia M, Kuijper EJ, Minton NP: Array comparative hybridisation reveals a high degree of similarity between UK and European clinical isolates of hypervirulent Clostridium difficile. BMC Genomics 2010, 11:389. BioMed Central Full Text
  • [10]Stabler RA, Gerding DN, Songer JG, Drudy D, Brazier JS, Trinh HT, et al.: Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol 2006, 188:7297-7305.
  • [11]Brouwer MSM, Warburton PJ, Roberts AP, Mullany P, Allan E: Genetic Organisation, Mobility and Predicted Functions of Genes on Integrated, Mobile Genetic Elements in Sequenced Strains of Clostridium difficile. PLoS One 2011, 6:e23014.
  • [12]Tan KS, Wee BY, Song KP: Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile. J Med Microbiol 2001, 50:613-619.
  • [13]Braun V, Hundsberger T, Leukel P, Sauerborn M, von Eichel-Streiber C: Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 1996, 181:29-38.
  • [14]Govind R, Vediyappan G, Rolfe RD, Dupuy B, Fralick JA: Bacteriophage-mediated toxin gene regulation in Clostridium difficile. J Virol 2009, 83:12037-12045.
  • [15]Sekulovic O, Meessen-Pinard M, Fortier LC: Prophage-Stimulated Toxin Production in Clostridium difficile NAP1/027 Lysogens. J Bacteriol 2011, 193:2726-2734.
  • [16]Bakker D, Corver J, Harmanus C, Goorhuis A, Keessen EC, Fawley WN, et al.: Relatedness of human and animal Clostridium difficile PCR ribotype 078 isolates determined on the basis of multilocus variable-number tandem-repeat analysis and tetracycline resistance. J Clin Microbiol 2010, 48:3744-3749.
  • [17]Adams V, Lyras D, Farrow KA, Rood JI: The clostridial mobilisable transposons. Cell Mol Life Sci 2002, 59:2033-2043.
  • [18]Roberts AP, Mullany P: A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol 2009, 17:251-258.
  • [19]Brouwer MSM, Roberts AP, Mullany P, Allan E: In silico analysis of sequenced strains of Clostridium difficile reveals a related set of conjugative transposons carrying a variety of accessory genes. Mobile Genetic Elements 2012., 2http://dx.doi.org/10.4161/mge.2.1.19297 webcite
  • [20]Mullany P, Wilks M, Lamb I, Clayton C, Wren B, Tabaqchali S: Genetic analysis of a tetracycline resistance element from Clostridium difficile and its conjugal transfer to and from Bacillus subtilis. J Gen Microbiol 1990, 136:1343-1349.
  • [21]Wang H, Roberts AP, Lyras D, Rood JI, Wilks M, Mullany P: Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: excision and circularization is mediated by the large resolvase, TndX. J Bacteriol 2000, 182:3775-3783.
  • [22]Camilli R, Del GM, Iannelli F, Pantosti A: New genetic element carrying the erythromycin resistance determinant erm(TR) in Streptococcus pneumoniae. Antimicrob Agents Chemother 2008, 52:619-625.
  • [23]Kobayashi I: Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 2001, 29:3742-3756.
  • [24]Murphy E: Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3") (9). Mol Gen Genet 1985, 200:33-39.
  • [25]Chen C, Tang J, Dong W, Wang C, Feng Y, Wang J, et al.: A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One 2007, 2:e315.
  • [26]Abril C, Brodard I, Perreten V: Two novel antibiotic resistance genes, tet(44) and ant(6)-Ib, are located within a transferable pathogenicity island in Campylobacter fetus subsp. fetus. Antimicrob Agents Chemother 2010, 54:3052-3055.
  • [27]Smith MC, Thorpe HM: Diversity in the serine recombinases. Mol Microbiol 2002, 44:299-307.
  • [28]Roberts AP, Chandler M, Courvalin P, Guedon G, Mullany P, Pembroke T, et al.: Revised nomenclature for transposable genetic elements. Plasmid 2008, 60:167-173.
  • [29]Su YA, He P, Clewell DB: Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob Agents Chemother 1992, 36:769-778.
  • [30]Ciric L, Mullany P, Roberts AP: Antibiotic and antiseptic resistance genes are linked on a novel mobile genetic element: Tn6087. J Antimicrob Chemother 2011, 66:2235-2239.
  • [31]Knetsch CW, Hensgens MPM, Harmanus C, van der Bijl MW, Savelkoul PH, Kuijper EJ, et al.: Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology 2011, 157:3113-3123.
  • [32]Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, et al.: Clostridium difficile infection in Europe: a hospital-based survey. Lancet 2011, 377:63-73.
  • [33]Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW, Fung R, et al.: Multilocus sequence typing of Clostridium difficile. J Clin Microbiol 2010, 48:770-778.
  • [34]Stabler RA, Dawson LF, Valiente E, Cairns MD, Martin MJ, Donahue EH, et al.: Macro and Micro Diversity of Clostridium difficile Isolates from Diverse Sources and Geographical Locations. PLoS One 2012, 7:e31559.
  • [35]Dingle KE, Griffiths D, Didelot X, Evans J, Vaughan A, Kachrimanidou M, et al.: Clinical Clostridium difficile: clonality and pathogenicity locus diversity. PLoS One 2011, 6:e19993.
  • [36]Fawley WN, Freeman J, Smith C, Harmanus C, van den Berg RJ, Kuijper EJ, et al.: Use of highly discriminatory fingerprinting to analyze clusters of Clostridium difficile infection cases due to epidemic Type 027 strains. J Clin Microbiol 2008, 46:954-960.
  • [37]van den Berg RJ, Schaap I, Templeton KE, Klaassen CH, Kuijper EJ: Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J Clin Microbiol 2007, 45:1024-1028.
  • [38]Goorhuis A, Legaria MC, van den Berg RJ, Harmanus C, Klaassen CH, Brazier JS, et al.: Application of multiple-locus variable-number tandem-repeat analysis to determine clonal spread of toxin A-negative Clostridium difficile in a general hospital in Buenos Aires, Argentina. Clin Microbiol Infect 2009, 15:1080-1086.
  • [39]Paltansing S, van den Berg RJ, Guseinova RA, Visser CE, van der Vorm ER, Kuijper EJ: Characteristics and incidence of Clostridium difficile-associated disease, The Netherlands, 2005. Clin Microbiol Infect 2007, 13:1058-1064.
  • [40]Bidet P, Barbut F, Lalande V, Burghoffer B, Petit JC: Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 1999, 175:261-266.
  • [41]Hachler H, Kayser FH, Berger-Bachi B: Homology of a transferable tetracycline resistance determinant of Clostridium difficile with Streptococcus (Enterococcus) faecalis transposon Tn916. Antimicrob Agents Chemother 1987, 31:1033-1038.
  • [42]Brouwer MS, Allan E, Mullany P, Roberts AP: Draft Genome Sequence of the Nontoxigenic Clostridium difficile Strain CD37. J Bacteriol 2012, 194:2125-2126.
  • [43]van den Berg RJ, Claas EC, Oyib DH, Klaassen CH, Dijkshoorn L, Brazier JS, et al.: Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol 2004, 42:1035-1041.
  • [44]Carver T, Berriman M, Tivey A, Patel C, Bohme U, Barrell BG, et al.: Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 2008, 24:2672-2676.
  • [45]Hussain HA, Roberts AP, Mullany P: Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Deltaerm) and demonstration that the conjugative transposon Tn916DeltaE enters the genome of this strain at multiple sites. J Med Microbiol 2005, 54:137-141.
  • [46]Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J: DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009, 25:119-120.
  文献评价指标  
  下载次数:9次 浏览次数:11次