期刊论文详细信息
BMC Complementary and Alternative Medicine
A novel systems pharmacology model for herbal medicine injection: a case using reduning injection
Yonghua Wang3  Wei Xiao5  Yan Li2  Zhenzhong Wang5  Yao Yao4  Wei Zhou4  Chao Huang3  Wenjuan Zhang3  Haixing Yang1 
[1] College of Life Science, Northwest University, Xi’an, Shaanxi 710000, China;Lab of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China;College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China;Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China;State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222002, China
关键词: Mechanism of action;    Polypharmacology;    Reduning injection;    Systems pharmacology;   
Others  :  1085647
DOI  :  10.1186/1472-6882-14-430
 received in 2013-12-19, accepted in 2014-10-09,  发布年份 2014
PDF
【 摘 要 】

Background

Compared with the traditional oral administration form, injection administration is basically superior in terms of both biological availability and therapeutic effects. However, few researches have focused on the traditional Chinese medicinal injection due to the complicated constituents and the intricate mechanism of action.

Methods

In the present work, a novel systems pharmacology model, integrating ADME (absorption, distribution, metabolism, and excretion) filtering such as half-life evaluation, network targeting, pathway and systems analyses, is specifically developed for the identification of active compounds and the study of the mechanism of action of TCM injection, which is exemplified by Reduning injection confronting the influenza.

Results

The ADME filter successfully identifies 35 bioactive compounds (31 molecules and 4 metabolites) from the Reduning injection. The systems analysis and experimental validation further reveal a new way of confronting influenza disease of this injection: 1) stimulating the immunomodulatory agents for immune response activation, and 2) regulating the inflammatory agents for anti-inflammation.

Conclusions

The novel systems pharmacology method used in this study has the potential to advance the understanding of the molecular mechanisms of action of multicomponent herbal injections, and provide clues to discovering more effective drugs against complex diseases.

【 授权许可】

   
2014 Yang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113175120729.pdf 2883KB PDF download
Figure 6. 76KB Image download
Figure 5. 161KB Image download
Figure 4. 192KB Image download
Figure 3. 187KB Image download
Figure 2. 194KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Zhou G, Chen S, Wang Z, Chen Z: Back to the future of oridonin: again, compound from medicinal herb shows potent antileukemia efficacies in vitro and in vivo. Cell Res 2007, 17(4):274-276.
  • [2]Xu H, Wang Y, Liu N: Safety of an injection with a mixture of extracts from Herba Artemisiae annuae, Fructus Gardeniae and Flos Lonicerae. Pharm World Sci 2009, 31(4):458-463.
  • [3]Zhang A, Sun H, Wang Z, Sun W, Wang P, Wang X: Metabolomics: towards understanding traditional Chinese medicine. Planta Med 2010, 76(17):2026-2035.
  • [4]Quintana-Murci L, Chaix R, Wells RS, Behar DM, Sayar H, Scozzari R, Rengo C, Al-Zahery N, Semino O, Santachiara-Benerecetti AS: Where west meets east: the complex mtDNA landscape of the southwest and central Asian corridor. Am J Hum Genet 2004, 74(5):827-845.
  • [5]van der Graaf P, Benson N: Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm Res 2011, 28(7):1460-1464.
  • [6]Zhao S, Iyengar R: Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 2012, 52:505-521.
  • [7]Li P, Chen J, Wang J, Zhou W, Wang X, Li B, Tao W, Wang W, Wang Y, Yang L: Systems pharmacology strategies for drug discovery and combination with applications to CVD. J Ethnopharmacol 2013, 151(1):93-107.
  • [8]Tao W, Xu X, Wang X, Li B, Wang Y, Li Y, Yang L: Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol 2012, 145:1-10.
  • [9]Huang C, Zheng C, Li Y, Wang Y, Lu A, Yang L: Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief Bioinform 2013, 15(5):710-733.
  • [10]Li B, Xu X, Wang X, Yu H, Li X, Tao W, Wang Y, Yang L: A systems biology approach to understanding the mechanisms of action of Chinese herbs for treatment of cardiovascular disease. Int J Mol Sci 2012, 13(10):13501-13520.
  • [11]Liu H, Wang J, Zhou W, Wang Y, Yang L: Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice. J Ethnopharmacol 2013, 52:773-793.
  • [12]Yao Y, Zhang X, Wang Z, Zheng C, Li P, Huang C, Tao W, Xiao W, Wang Y, Huang L: Deciphering the combination principles of traditional Chinese medicine from a systems pharmacology perspective based on Ma-Huang decoction. J Ethnopharmacol 2013, 150(2):619-638.
  • [13]Wang X, Xu X, Tao W, Li Y, Wang Y, Yang L: A systems biology approach to uncovering pharmacological synergy in herbal medicines with applications to cardiovascular disease. Evid Based Complement Altern Med 2012., 2012
  • [14]Li Y, Wang Z, Bi Y, Ding G, Sheng L, Qin J, Xiao W, Li J, Wang Y, Wang X: The evaluation and implementation of direct analysis in real time quadrupole time-of-flight tandem mass spectrometry for characterization and quantification of geniposide in Re Du Ning injections. Rapid Commun Mass Spectrom 2012, 26(11):1377-1384.
  • [15]Li H: Study on the Therapeutical Basis of Composite Herbal Medicines of Reduning Injection. 2013. Accepted
  • [16]van de Waterbeemd H, Gifford E: ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2003, 2(3):192-204.
  • [17]Tetko I, Tanchuk V, Villa A: Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices. J Chem Inf Comput Sci 2001, 41(5):1407-1421.
  • [18]Lipinski C, Lombardo F, Dominy B, Feeney P: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2012, 46:3-26.
  • [19]Sun H: A universal molecular descriptor system for prediction of logP, logS, logBB, and absorption. J Chem Inf Comput Sci 2004, 44(2):748-757.
  • [20]Jorgensen W, Duffy E: Prediction of drug solubility from structure. Adv Drug Deliv Rev 2002, 54(3):355-366.
  • [21]Lin J, Yamazaki M: Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 2003, 42(1):59-98.
  • [22]Wang Y, Li Y, Yang S, Yang L: Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J Chem Inf Model 2005, 45(3):750-757.
  • [23]Kratochwil N, Huber W, Müller F, Kansy M, Gerber P: Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol 2002, 64(9):1355-1374.
  • [24]Zsila F, Bikadi Z, Malik D, Hari P, Pechan I, Berces A, Hazai E: Evaluation of drug-human serum albumin binding interactions with support vector machine aided online automated docking. Bioinformatics (Oxford, England) 2011, 27(13):1806-1813.
  • [25]Nelson D, Koymans L, Kamataki T, Stegeman J, Feyereisen R, Waxman D, Waterman M, Gotoh O, Coon M, Estabrook R: P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996, 6(1):1-51.
  • [26]Saunders KC: Automation and robotics in ADME screening. Drug Discov Today Technol 2004, 1(4):373-380.
  • [27]Rostkowski M, Spjuth O, Rydberg P: WhichCyp: prediction of cytochromes P450 inhibition. Bioinformatics (Oxford, England) 2013, 29:2051-2052.
  • [28]Manga N, Duffy J, Rowe P, Cronin M: Structure-based methods for the prediction of the dominant P450 enzyme in human drug biotransformation: consideration of CYP3A4, CYP2C9, CYP2D6. SAR QSAR Environ Res 2005, 16(1–2):43-61.
  • [29]Madden JC: In Silico Approaches for Predicting ADME Properties. In Recent Advances in QSAR Studies. Netherlands: Springer; 2010:283-304.
  • [30]Kidron H, Del Amo EM, Vellonen KS, Urtti A: Prediction of the vitreal half-life of small molecular drug-like compounds. Pharm Res 2012, 29(12):3302-3311.
  • [31]Boulesteix A-L: PLS dimension reduction for classification with microarray data. Stat Appl Genet Mol Biol 2004, 3(1):Article 33.
  • [32]Chung D, Keles S: Sparse partial least squares classification for high dimensional data. Stat Appl Genet Mol Biol 2010, 9(1):Article 17.
  • [33]Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V: DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs. Nucleic Acids Res 2011, 39(Database issue):D1035-D1041.
  • [34]Todeschini R, Consonni V: Handbook of Molecular Descriptors. 2008. Wiley.com
  • [35]Walters W, Murcko M: Prediction of ‘drug-likeness’. Adv Drug Deliv Rev 2002, 54(3):255-271.
  • [36]Ma C, Wang L, Xie X-Q: GPU accelerated chemical similarity calculation for compound library comparison. J Chem Inf Model 2011, 51(7):1521-1527.
  • [37]Rix U, Superti-Furga G: Target profiling of small molecules by chemical proteomics. Nat Chem Biol 2009, 5(9):616-624.
  • [38]Yu H, Chen J, Xu X, Li Y, Zhao H, Fang Y, Li X, Zhou W, Wang W, Wang Y: A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One 2012, 7(5):e37608.
  • [39]Keiser M, Roth B, Armbruster B, Ernsberger P, Irwin J, Shoichet B: Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007, 25(2):197-206.
  • [40]Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ, Bork P: STITCH 3: zooming in on protein–chemical interactions. Nucleic Acids Res 2012, 40(D1):D876-D880.
  • [41]Xu Q, Qu F, Pelkonen O: Network Pharmacology and Traditional Chinese Medicine. 2012.
  • [42]Azuaje FJ, Zhang L, Devaux Y, Wagner DR: Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci Rep 2011., 1
  • [43]Li S, Zhang B: Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 2013, 11(2):110-120.
  • [44]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-2504.
  • [45]Archetti F, Lanzeni S, Messina E, Vanneschi L: Genetic Programming for Human Oral Bioavailability of Drugs. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. ACM; 2006:255-262.
  • [46]Di L, Kerns E: Profiling drug-like properties in discovery research. Curr Opin Chem Biol 2003, 7(3):402-408.
  • [47]Shang X, Pan H, Li M, Miao X, Ding H: Lonicera japonica Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol 2011, 138(1):1-21.
  • [48]Chen C, Zhou J, Ji C: Quercetin: a potential drug to reverse multidrug resistance. Life Sci 2010, 87(11–12):333-338.
  • [49]Lin Y, Shi R, Wang X, Shen H-M: Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr Cancer Drug Targets 2008, 8(7):634-646.
  • [50]Rahden-Staron I, Czeczot H, Szumilo M: Induction of rat liver cytochrome P450 isoenzymes CYP 1A and CYP 2B by different fungicides, nitrofurans, and quercetin. Mutat Res 2001, 498(1–2):57-66.
  • [51]Choi J, Piao Y, Kang K: Effects of quercetin on the bioavailability of doxorubicin in rats: role of CYP3A4 and P-gp inhibition by quercetin. Arch Pharm Res 2011, 34(4):607-613.
  • [52]Ding Y, Zhang T, Tao J, Zhang L, Shi J, Ji G: Potential hepatotoxicity of geniposide, the major iridoid glycoside in dried ripe fruits of Gardenia jasminoides (Zhi-zi). Nat Prod Res 2013, 27:929-933.
  • [53]Tang H, Min G, Ge B, Li Y, Liu X, Jiang S: Evaluation of protective effects of Chi-Zhi-Huang decoction on phase I drug metabolism of liver injured rats by cocktail probe drugs. J Ethnopharmacol 2008, 117(3):420-426.
  • [54]Chula S, Hang L, Yinying B, Jianning S, Shi R: The effects of notoginsenoside R (1) on the intestinal absorption of geniposide by the everted rat gut sac model. J Ethnopharmacol 2012, 142(1):136-143.
  • [55]Jang G, Harris R, Lau D: Pharmacokinetics and its role in small molecule drug discovery research. Med Res Rev 2001, 21(5):382-396.
  • [56]Stoner C, Gifford E, Stankovic C, Lepsy C, Brodfuehrer J, Prasad J, Surendran N: Implementation of an ADME enabling selection and visualization tool for drug discovery. J Pharm Sci 2004, 93(5):1131-1141.
  • [57]Boran AD, Iyengar R: Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 2010, 13(3):297-309.
  • [58]Boots A, Haenen G, Bast A: Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008, 585(2–3):325-337.
  • [59]Spinella M: The importance of pharmacological synergy in psychoactive herbal medicines. Altern Med Rev 2002, 7(2):130-137.
  • [60]Koshikawa N, Hasegawa S, Nagashima Y, Mitsuhashi K, Tsubota Y, Miyata S, Miyagi Y, Yasumitsu H, Miyazaki K: Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol 1998, 153937–944(3):937.
  • [61]Taubenberger JK, Morens DM: The pathology of influenza virus infections. Annu Rev Pathol 2008, 3:499-522.
  • [62]Qiucheng L: The present state and prospect of the study of syndrome. Zhongguo Zhong Xi Yi Jie He Za Zhi 1998, 4(4):242-246.
  • [63]Albert D, Zündorf I, Dingermann T, Müller W, Steinhilber D, Werz O: Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase. Biochem Pharmacol 2002, 64(12):1767-1775.
  • [64]McMillan R: Leukotrienes in respiratory disease. Paediatr Respir Rev 2001, 2(3):238-244.
  • [65]Wang X, Xu X, Li Y, Li X, Tao W, Li B, Wang Y, Yang L: Systems pharmacology uncovers Janus functions of botanical drugs: activation of host defense system and inhibition of influenza virus replication. Integr Biol (Camb) 2012, 5:351-371.
  • [66]Ehrhardt C, Ludwig S: A new player in a deadly game: influenza viruses and the PI3K/Akt signalling pathway. Cell Microbiol 2009, 11(6):863-871.
  • [67]Fritz J, Ferrero R, Philpott D, Girardin S: Nod-like proteins in immunity, inflammation and disease. Nat Immunol 2006, 7(12):1250-1257.
  • [68]Chen G, Shaw M, Kim Y, Nuñez G: NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 2009, 4:365-398.
  • [69]Dinarello C: Biologic basis for interleukin-1 in disease. Blood 1996, 87(6):2095-2147.
  • [70]Beg A: Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol 2002, 23(11):509-512.
  • [71]Akira S, Takeda K, Kaisho T: Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001, 2(8):675-680.
  • [72]Fedson D: Confronting the next influenza pandemic with anti-inflammatory and immunomodulatory agents: why they are needed and how they might work. Influenza Other Respi Viruses 2009, 3(4):129-142.
  • [73]Pang IK, Iwasaki A: Inflammasomes as mediators of immunity against influenza virus. Trends Immunol 2011, 32(1):34-41.
  • [74]Romeo GR, Lee J, Shoelson SE: Metabolic syndrome, insulin resistance, and roles of inflammation–mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol 2012, 32(8):1771-1776.
  • [75]Hsu HY, Wen MH: Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J Biol Chem 2002, 277(25):22131-22139.
  • [76]Moncada S: Nitric oxide: discovery and impact on clinical medicine. J R Soc Med 1999, 92(4):164-169.
  • [77]Pasparakis M: Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol 2009, 9(11):778-788.
  • [78]Mancino A, Lawrence T: Nuclear factor-kappaB and tumor-associated macrophages. Clin Cancer Res 2010, 16(3):784-789.
  文献评价指标  
  下载次数:29次 浏览次数:22次