| BMC Genomics | |
| In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column | |
| Thomas Lufkin2  Shyam Prabhakar1  Joel Sng3  Siew Lan Lim3  Xing Xing3  Vibhor Kumar1  Petra Kraus2  Sook Peng Yap3  V Sivakamasundari3  Sumantra Chatterjee3  | |
| [1] Computational and Mathematical Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore;Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA;Stem Cell and Developmental Biology, 60 Biopolis Street, Singapore 138672, Singapore | |
| 关键词: EGFP; Microarray; FACS; ChIP-Seq; Sox9; Bapx1; Expression profiling; Gene regulatory network; | |
| Others : 1127532 DOI : 10.1186/1471-2164-15-1072 |
|
| received in 2014-07-29, accepted in 2014-11-27, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Vertebrate organogenesis is a highly complex process involving sequential cascades of transcription factor activation or repression. Interestingly a single developmental control gene can occasionally be essential for the morphogenesis and differentiation of tissues and organs arising from vastly disparate embryological lineages.
Results
Here we elucidated the role of the mammalian homeobox gene Bapx1 during the embryogenesis of five distinct organs at E12.5 - vertebral column, spleen, gut, forelimb and hindlimb - using expression profiling of sorted wildtype and mutant cells combined with genome wide binding site analysis. Furthermore we analyzed the development of the vertebral column at the molecular level by combining transcriptional profiling and genome wide binding data for Bapx1 with similarly generated data sets for Sox9 to assemble a detailed gene regulatory network revealing genes previously not reported to be controlled by either of these two transcription factors.
Conclusions
The gene regulatory network appears to control cell fate decisions and morphogenesis in the vertebral column along with the prevention of premature chondrocyte differentiation thus providing a detailed molecular view of vertebral column development.
【 授权许可】
2014 Chatterjee et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150220225158128.pdf | 2497KB | ||
| Figure 6. | 317KB | Image | |
| Figure 5. | 110KB | Image | |
| Figure 4. | 78KB | Image | |
| Figure 3. | 142KB | Image | |
| Figure 2. | 124KB | Image | |
| Figure 1. | 69KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Barton NH: Pleiotropic models of quantitative variation. Genetics 1990, 124:773-782.
- [2]Otto SP: Two steps forward, one step back: the pleiotropic effects of favoured alleles. Proc Biol Sci 2004, 271:705-714.
- [3]van de Peppel J, Holstege FC: Multifunctional genes. Mol Syst Biol 2005, 1(2005):0003.
- [4]Stearns FW: One hundred years of pleiotropy: a retrospective. Genetics 2010, 186:767-773.
- [5]Kim Y, Nirenberg M: Drosophila NK-homeobox genes. Proc Natl Acad Sci U S A 1989, 86:7716-7720.
- [6]Tribioli C, Frasch M, Lufkin T: Bapx1: an evolutionary conserved homologue of the Drosophila bagpipe homeobox gene is expressed in splanchnic mesoderm and the embryonic skeleton. Mech Dev 1997, 65:145-162.
- [7]Tribioli C, Lufkin T: Molecular cloning, chromosomal mapping and developmental expression of BAPX1, a novel human homeobox-containing gene homologous to Drosophila bagpipe. Gene 1997, 203:225-233.
- [8]Akazawa H, Komuro I, Sugitani Y, Yazaki Y, Nagai R, Noda T: Targeted disruption of the homeobox transcription factor Bapx1 results in lethal skeletal dysplasia with asplenia and gastroduodenal malformation. Genes Cells 2000, 5:499-513.
- [9]Lettice LA, Purdie LA, Carlson GJ, Kilanowski F, Dorin J, Hill RE: The mouse bagpipe gene controls development of axial skeleton, skull, and spleen. Proc Natl Acad Sci U S A 1999, 96:9695-9700.
- [10]Tribioli C, Lufkin T: The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 1999, 126:5699-5711.
- [11]Verzi MP, Stanfel MN, Moses KA, Kim BM, Zhang Y, Schwartz RJ, Shivdasani RA, Zimmer WE: Role of the homeodomain transcription factor Bapx1 in mouse distal stomach development. Gastroenterology 2009, 136:1701-1710.
- [12]Hecksher-Sorensen J, Watson RP, Lettice LA, Serup P, Eley L, De Angelis C, Ahlgren U, Hill RE: The splanchnic mesodermal plate directs spleen and pancreatic laterality, and is regulated by Bapx1/Nkx3.2. Development 2004, 131:4665-4675.
- [13]Tribioli C, Lufkin T: Bapx1 homeobox gene gain-of-function mice show preaxial polydactyly and activated Shh signaling in the developing limb. Dev Dyn 2006, 235:2483-2492.
- [14]Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B: The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002, 16:2813-2828.
- [15]Bi W, Huang W, Whitworth DJ, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B: Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci U S A 2001, 98:6698-6703.
- [16]Yamashita S, Andoh M, Ueno-Kudoh H, Sato T, Miyaki S, Asahara H: Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp Cell Res 2009, 315:2231-2240.
- [17]Sivakamasundari V, Chan HY, Yap SP, Xing X, Kraus P, Lufkin T: New Bapx1(Cre-EGFP) mouse lines for lineage tracing and conditional knockout studies. Genesis 2012, 50:375-383.
- [18]Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E: A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 1988, 62:2636-2643.
- [19]Hellen CU, Sarnow P: Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 2001, 15:1593-1612.
- [20]Chan HY, Sivakamasundari T, Xing X, Kraus P, Yap SP, Ng P, Lim SL, Lufkin T: Comparison of IRES and F2A-Based Locus-Specific Multicistronic Expression in Stable Mouse Lines. PLoS One 2011, 6:e28885.
- [21]Bagnall KM, Harris PF, Jones PR: A radiographic study of the longitudinal growth of primary ossification centers in limb long bones of the human fetus. Anat Rec 1982, 203:293-299.
- [22]Johnson RL, Tabin CJ: Molecular models for vertebrate limb development. Cell 1997, 90:979-990.
- [23]Cohn MJ, Tickle C: Limbs: a model for pattern formation within the vertebrate body plan. Trends Genet 1996, 12:253-257.
- [24]Kraus P, Fraidenraich D, Loomis CA: Some distal limb structures develop in mice lacking Sonic hedgehog signaling. Mech Dev 2001, 100:45-58.
- [25]Cairns DM, Sato ME, Lee PG, Lassar AB, Zeng L: A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. Dev Biol 2008, 323:152-165.
- [26]Kempf H, Ionescu A, Udager AM, Lassar AB: Prochondrogenic signals induce a competence for Runx2 to activate hypertrophic chondrocyte gene expression. Dev Dyn 2007, 236:1954-1962.
- [27]Kim DW, Kempf H, Chen RE, Lassar AB: Characterization of Nkx3.2 DNA binding specificity and its requirement for somitic chondrogenesis. J Biol Chem 2003, 278:27532-27539.
- [28]Kim DW, Lassar AB: Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2. Mol Cell Biol 2003, 23:8704-8717.
- [29]Murtaugh LC, Zeng L, Chyung JH, Lassar AB: The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev Cell 2001, 1:411-422.
- [30]Provot S, Kempf H, Murtaugh LC, Chung UI, Kim DW, Chyung J, Kronenberg HM, Lassar AB: Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development 2006, 133:651-662.
- [31]Zeng L, Kempf H, Murtaugh LC, Sato ME, Lassar AB: Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev 2002, 16:1990-2005.
- [32]Kawato Y, Hirao M, Ebina K, Tamai N, Shi K, Hashimoto J, Yoshikawa H, Myoui A: Nkx3.2-induced suppression of Runx2 is a crucial mediator of hypoxia-dependent maintenance of chondrocyte phenotypes. Biochem Biophys Res Commun 2011, 416:205-210.
- [33]Cairns DM, Liu R, Sen M, Canner JP, Schindeler A, Little DG, Zeng L: Interplay of Nkx3.2, Sox9 and Pax3 regulates chondrogenic differentiation of muscle progenitor cells. PLoS One 2012, 7:e39642.
- [34]Asayesh A, Sharpe J, Watson RP, Hecksher-Sorensen J, Hastie ND, Hill RE, Ahlgren U: Spleen versus pancreas: strict control of organ interrelationship revealed by analyses of Bapx1-/- mice. Genes Dev 2006, 20:2208-2213.
- [35]Saga Y: The mechanism of somite formation in mice. Curr Opin Genet Dev 2012, 22:331-338.
- [36]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1-13.
- [37]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
- [38]Han Y, Lefebvre V: L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer. Mol Cell Biol 2008, 28:4999-5013.
- [39]Lefebvre V, Li P, de Crombrugghe B: A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. Embo J 1998, 17:5718-5733.
- [40]Long F, Ornitz DM: Development of the endochondral skeleton. Cold Spring Harb Perspect Biol 2013, 5:a008334.
- [41]Koss M, Bolze A, Brendolan A, Saggese M, Capellini TD, Bojilova E, Boisson B, Prall OW, Elliott DA, Solloway M, Lenti E, Hidaka C, Chang CP, Mahlaoui N, Harvey RP, Casanova JL, Selleri L: Congenital asplenia in mice and humans with mutations in a Pbx/Nkx2-5/p15 module. Dev Cell 2012, 22:913-926.
- [42]Mok H, Mendoza M, Prchal JT, Balogh P, Schumacher A: Dysregulation of ferroportin 1 interferes with spleen organogenesis in polycythaemia mice. Development 2004, 131:4871-4881.
- [43]van der Lugt NM, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H, van der Valk M, Deschamps J, Sofroniew M, van Lohuizen M, Berns A: Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 1994, 8:757-769.
- [44]Hoffman BG, Zavaglia B, Witzsche J, Ruiz de Algara T, Beach M, Hoodless PA, Jones SJ, Marra MA, Helgason CD: Identification of transcripts with enriched expression in the developing and adult pancreas. Genome Biol 2008, 9:R99. BioMed Central Full Text
- [45]Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nurnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, et al.: A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 2011, 9:e1000582.
- [46]Azpiazu N, Frasch M: Tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 1993, 7:1325-1340.
- [47]Azpiazu N, Lawrence PA, Vincent JP, Frasch M: Segmentation and specification of the Drosophila mesoderm. Genes Dev 1996, 10:3183-3194.
- [48]Maes C, Stockmans I, Moermans K, Van Looveren R, Smets N, Carmeliet P, Bouillon R, Carmeliet G: Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Invest 2004, 113:188-199.
- [49]Hattori T, Muller C, Gebhard S, Bauer E, Pausch F, Schlund B, Bosl MR, Hess A, Surmann-Schmitt C, von der Mark H, de Crombrugghe B, von der Mark K: SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development 2010, 137:901-911.
- [50]Nakamura Y, Yamamoto K, He X, Otsuki B, Kim Y, Murao H, Soeda T, Tsumaki N, Deng JM, Zhang Z, Behringer RR, Crombrugghe B, Postlethwait JH, Warman ML, Nakamura T, Akiyama H: Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25. Nat Commun 2011, 2:251.
- [51]Arnott JA, Lambi AG, Mundy C, Hendesi H, Pixley RA, Owen TA, Safadi FF, Popoff SN: The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Crit Rev Eukaryot Gene Expr 2011, 21:43-69.
- [52]Hessle L, Stordalen GA, Wenglen C, Petzold C, Tanner EK, Brorson SH, Baekkevold ES, Onnerfjord P, Reinholt FP, Heinegard D: The skeletal phenotype of chondroadherin deficient mice. PLoS One 2013, 8:e63080.
- [53]Cheong CY, Lon Ng PM, Ponnampalam R, Tsai HH, Bourque G, Lufkin T: In silico tandem affinity purification refines an Oct4 interaction list. Stem Cell Res Ther 2011, 2:26. BioMed Central Full Text
- [54]Ng PM, Lufkin T: Embryonic stem cells: protein interaction networks. Biomol Concepts 2011, 2:13-25.
- [55]Lee MY, Lufkin T: Development of the “Three-step MACS”: a novel strategy for isolating rare cell populations in the absence of known cell surface markers from complex animal tissue. J Biomol Tech 2012, 23:69-77.
- [56]Lee WJ, Kraus P, Lufkin T: Endogenous tagging of the murine transcription factor Sox5 with hemaglutinin for functional studies. Transgenic Res 2012, 21:293-301.
- [57]Karpeisky M, Senchenko VN, Dianova MV, Kanevsky V: Formation and properties of S-protein complex with S-peptide-containing fusion protein. FEBS Lett 1994, 339:209-212.
- [58]Zheng CF, Simcox T, Xu L, Vaillancourt P: A new expression vector for high level protein production, one step purification and direct isotopic labeling of calmodulin-binding peptide fusion proteins. Gene 1997, 186:55-60.
- [59]Hackbarth JS, Lee SH, Meng XW, Vroman BT, Kaufmann SH, Karnitz LM: S-peptide epitope tagging for protein purification, expression monitoring, and localization in mammalian cells. Biotechniques 2004, 37:835-839.
- [60]Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008, 9:R137. BioMed Central Full Text
- [61]Park M, Yong Y, Choi SW, Kim JH, Lee JE, Kim DW: Constitutive RelA activation mediated by Nkx3.2 controls chondrocyte viability. Nat Cell Biol 2007, 9:287-298.
- [62]Mertin S, McDowall SG, Harley VR: The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Res 1999, 27:1359-1364.
- [63]Bernard P, Tang P, Liu S, Dewing P, Harley VR, Vilain E: Dimerization of SOX9 is required for chondrogenesis, but not for sex determination. Hum Mol Genet 2003, 12:1755-1765.
- [64]Oh CD, Maity SN, Lu JF, Zhang J, Liang S, Coustry F, de Crombrugghe B, Yasuda H: Identification of SOX9 interaction sites in the genome of chondrocytes. PLoS One 2010, 5:e10113.
- [65]van Doorninck JH, van Der Wees J, Karis A, Goedknegt E, Engel JD, Coesmans M, Rutteman M, Grosveld F, De Zeeuw CI: GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J Neurosci 1999, 19:RC12.
- [66]Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M: Cadherin regulates dendritic spine morphogenesis. Neuron 2002, 35:77-89.
- [67]Fujino T, Leslie JH, Eavri R, Chen JL, Lin WC, Flanders GH, Borok E, Horvath TL, Nedivi E: CPG15 regulates synapse stability in the developing and adult brain. Genes Dev 2011, 25:2674-2685.
- [68]Corbo JC, Deuel TA, Long JM, LaPorte P, Tsai E, Wynshaw-Boris A, Walsh CA: Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J Neurosci 2002, 22:7548-7557.
- [69]Kappeler C, Saillour Y, Baudoin JP, Tuy FP, Alvarez C, Houbron C, Gaspar P, Hamard G, Chelly J, Metin C, Francis F: Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice. Hum Mol Genet 2006, 15:1387-1400.
- [70]Fang X, Yoon JG, Li L, Yu W, Shao J, Hua D, Zheng S, Hood L, Goodlett DR, Foltz G, Lin B: The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics 2011, 12:11. BioMed Central Full Text
- [71]Tamplin OJ, Cox BJ, Rossant J: Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord. Dev Biol 2011, 360:415-425.
- [72]Udager A, Prakash A, Gumucio DL: Dividing the tubular gut: generation of organ boundaries at the pylorus. Prog Mol Biol Transl Sci 2010, 96:35-62.
- [73]Brendolan A, Rosado MM, Carsetti R, Selleri L, Dear TN: Development and function of the mammalian spleen. Bioessays 2007, 29:166-177.
- [74]Kraus P, Leong G, Tan V, Xing X, Goh JW, Yap SP, Lufkin T: A more cost effective and rapid high percentage germ-line transmitting chimeric mouse generation procedure via microinjection of 2-cell, 4-cell, and 8-cell embryos with ES and iPS cells. Genesis 2010, 48:394-399.
- [75]Farley FW, Soriano P, Steffen LS, Dymecki SM: Widespread recombinase expression using FLPeR (flipper) mice. Genesis 2000, 28:106-110.
- [76]Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM: High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 2000, 25:139-140.
- [77]Schmidt D, Wilson MD, Spyrou C, Brown GD, Hadfield J, Odom DT: ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods 2009, 48:240-248.
- [78]McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G: GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 2010, 28:495-501.
- [79]Chatterjee S, Bourque G, Lufkin T: Conserved and non-conserved enhancers direct tissue specific transcription in ancient germ layer specific developmental control genes. BMC Dev Biol 2011, 11:63. BioMed Central Full Text
- [80]Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27:431-432.
PDF