期刊论文详细信息
BMC Systems Biology
A model of estrogen-related gene expression reveals non-linear effects in transcriptional response to tamoxifen
David J Harrison1  Kenneth Macleod2  Simon P Langdon2  Azusa Yamaguchi4  Galina Lebedeva3 
[1] Medical and Biological Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9TF, UK;Division of Pathology, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK;Centre for Synthetic and Systems Biology, University of Edinburgh, CH Waddington Building, the Kings Buildings, Mayfield Road, EH9 3JD, Edinburgh, UK;School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, UK
关键词: Global sensitivity analysis;    Mathematical model;    SERM;    Tamoxifen;    Cancer;    Estrogen receptor;   
Others  :  1143543
DOI  :  10.1186/1752-0509-6-138
 received in 2012-07-16, accepted in 2012-10-26,  发布年份 2012
PDF
【 摘 要 】

Background

Estrogen receptors alpha (ER) are implicated in many types of female cancers, and are the common target for anti-cancer therapy using selective estrogen receptor modulators (SERMs, such as tamoxifen). However, cell-type specific and patient-to-patient variability in response to SERMs (from suppression to stimulation of cancer growth), as well as frequent emergence of drug resistance, represents a serious problem. The molecular processes behind mixed effects of SERMs remain poorly understood, and this strongly motivates application of systems approaches. In this work, we aimed to establish a mathematical model of ER-dependent gene expression to explore potential mechanisms underlying the variable actions of SERMs.

Results

We developed an equilibrium model of ER binding with 17β-estradiol, tamoxifen and DNA, and linked it to a simple ODE model of ER-induced gene expression. The model was parameterised on the broad range of literature available experimental data, and provided a plausible mechanistic explanation for the dual agonism/antagonism action of tamoxifen in the reference cell line used for model calibration. To extend our conclusions to other cell types we ran global sensitivity analysis and explored model behaviour in the wide range of biologically plausible parameter values, including those found in cancer cells. Our findings suggest that transcriptional response to tamoxifen is controlled in a complex non-linear way by several key parameters, including ER expression level, hormone concentration, amount of ER-responsive genes and the capacity of ER-tamoxifen complexes to stimulate transcription (e.g. by recruiting co-regulators of transcription). The model revealed non-monotonic dependence of ER-induced transcriptional response on the expression level of ER, that was confirmed experimentally in four variants of the MCF-7 breast cancer cell line.

Conclusions

We established a minimal mechanistic model of ER-dependent gene expression, that predicts complex non-linear effects in transcriptional response to tamoxifen in the broad range of biologically plausible parameter values. Our findings suggest that the outcome of a SERM’s action is defined by several key components of cellular micro-environment, that may contribute to cell-type-specific effects of SERMs and justify the need for the development of combinatorial biomarkers for more accurate prediction of the efficacy of SERMs in specific cell types.

【 授权许可】

   
2012 Lebedeva et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329112913210.pdf 1936KB PDF download
Figure 8. 43KB Image download
Figure 3. 125KB Image download
Figure 6. 110KB Image download
Figure 5. 104KB Image download
Figure 4. 86KB Image download
Figure 3. 47KB Image download
Figure 2. 74KB Image download
Figure 1. 86KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 3.

Figure 8.

【 参考文献 】
  • [1]Tyson JJ, Baumann WT, Chen C, Verdugo A, Tavassoly I, Wang Y, Weiner LM, Clarke R: Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nat Rev Cancer 2011, 11:523-532.
  • [2]Ito K, Utsunomiya H, Niikura H, Yaegashi N, Sasano H: Inhibition of estrogen actions in human gynecological malignancies: new aspects of endocrine therapy for endometrial cancer and ovarian cancer. Mol Cell Endocrinol 2011, 340:161-167.
  • [3]Metivier R, Huet G, Gallais R, Finot L, Petit F, Tiffoche C, Merot Y, LePeron C, Reid G, Penot G, et al.: Dynamics of estrogen receptor-mediated transcriptional activation of responsive genes in vivo: apprehending transcription in four dimensions. Adv Exp Med Biol 2008, 617:129-138.
  • [4]Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M, Gannon F: Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 2003, 115:751-763.
  • [5]Shang Y: Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis. Nat Rev Cancer 2006, 6:360-368.
  • [6]Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M: Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000, 103:843-852.
  • [7]Naughton C, MacLeod K, Kuske B, Clarke R, Cameron DA, Langdon SP: Progressive loss of estrogen receptor alpha cofactor recruitment in endocrine resistance. Mol Endocrinol 2007, 21:2615-2626.
  • [8]Ward HW: Anti-oestrogen therapy for breast cancer: a trial of tamoxifen at two dose levels. Br Med J 1973, 1:13-14.
  • [9]Jones CD, Jevnikar MG, Pike AJ, Peters MK, Black LJ, Thompson AR, Falcone JF, Clemens JA: Antiestrogens. 2. Structure-activity studies in a series of 3-aroyl-2-arylbenzo[b]thiophene derivatives leading to [6-hydroxy-2-(4-hydroxyphenyl)benzo[b]thien-3-yl] [4-[2-(1-piperidinyl)ethoxy]-phenyl]methanone hydrochloride (LY156758), a remarkably effective estrogen antagonist with only minimal intrinsic estrogenicity. J Med Chem 1984, 27:1057-1066.
  • [10]Kangas L: Agonistic and antagonistic effects of antiestrogens in different target organs. Acta Oncol 1992, 31:143-146.
  • [11]McDonnell DP, Connor CE, Wijayaratne A, Chang CY, Norris JD: Definition of the molecular and cellular mechanisms underlying the tissue-selective agonist/antagonist activities of selective estrogen receptor modulators. Recent Prog Horm Res 2002, 57:295-316.
  • [12]McDonnell DP, Wardell SE: The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer. Curr Opin Pharmacol 2010, 10:620-628.
  • [13]Conzen SD: Minireview: nuclear receptors and breast cancer. Mol Endocrinol 2008, 22:2215-2228.
  • [14]Romano A, Adriaens M, Kuenen S, Delvoux B, Dunselman G, Evelo C, Groothuis P: Identification of novel ER-alpha target genes in breast cancer cells: gene- and cell-selective co-regulator recruitment at target promoters determines the response to 17beta-estradiol and tamoxifen. Mol Cell Endocrinol 2010, 314:90-100.
  • [15]Shang Y, Brown M: Molecular determinants for the tissue specificity of SERMs. Science 2002, 295:2465-2468.
  • [16]Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F, Regitnig P, Daxenbichler G, Desmedt C, Domont J, Marth C, et al.: Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol 2010, 28:4111-4119.
  • [17]Kok M, Linn SC, Van Laar RK, Jansen MP, van den Berg TM, Delahaye LJ, Glas AM, Peterse JL, Hauptmann M, Foekens JA, et al.: Comparison of gene expression profiles predicting progression in breast cancer patients treated with tamoxifen. Breast Cancer Res Treat 2009, 113:275-283.
  • [18]Jansen MP, Foekens JA, van Staveren IL, Dirkzwager-Kiel MM, Ritstier K, Look MP, Meijer-van Gelder ME, Sieuwerts AM, Portengen H, Dorssers LC, et al.: Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J Clin Oncol 2005, 23:732-740.
  • [19]Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, et al.: Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 2012.
  • [20]Dove S, Schonenberger H: Computer modelling of estrogenic transcriptional activation can account for different types of dose–response curves of estrogens. J Steroid Biochem Mol Biol 1993, 46:163-176.
  • [21]Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M: Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997, 389:753-758.
  • [22]Salomonsson M, Haggblad J, O'Malley BW, Sitbon GM: The human estrogen receptor hormone binding domain dimerizes independently of ligand activation. J Steroid Biochem Mol Biol 1994, 48:447-452.
  • [23]Tamrazi A, Carlson KE, Daniels JR, Hurth KM, Katzenellenbogen JA: Estrogen receptor dimerization: ligand binding regulates dimer affinity and dimer dissociation rate. Mol Endocrinol 2002, 16:2706-2719.
  • [24]Fowler AM, Solodin N, Preisler-Mashek MT, Zhang P, Lee AV, Alarid ET: Increases in estrogen receptor-alpha concentration in breast cancer cells promote serine 118/104/106-independent AF-1 transactivation and growth in the absence of estrogen. FASEB J 2004, 18:81-93.
  • [25]Fowler AM, Solodin NM, Valley CC, Alarid ET: Altered target gene regulation controlled by estrogen receptor-alpha concentration. Mol Endocrinol 2006, 20:291-301.
  • [26]Kumar V, Chambon P: The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 1988, 55:145-156.
  • [27]Carlsson B, Haggblad J: Quantitative determination of DNA-binding parameters for the human estrogen receptor in a solid-phase, nonseparation assay. Anal Biochem 1995, 232:172-179.
  • [28]Metzger D, Berry M, Ali S, Chambon P: Effect of antagonists on DNA binding properties of the human estrogen receptor in vitro and in vivo. Mol Endocrinol 1995, 9:579-591.
  • [29]Brandt ME, Vickery LE: Cooperativity and dimerization of recombinant human estrogen receptor hormone-binding domain. J Biol Chem 1997, 272:4843-4849.
  • [30]Murdoch FE, Gorski J: The role of ligand in estrogen receptor regulation of gene expression. Mol Cell Endocrinol 1991, 78:C103-108.
  • [31]Rich RL, Hoth LR, Geoghegan KF, Brown TA, LeMotte PK, Simons SP, Hensley P, Myszka DG: Kinetic analysis of estrogen receptor/ligand interactions. Proc Natl Acad Sci U S A 2002, 99:8562-8567.
  • [32]Mogilevskaya E, Bagrova N, Plyusnina T, Gizzatkulov N, Metelkin E, Goryacheva E, Smirnov S, Kosinsky Y, Dorodnov A, Peskov K, et al.: Kinetic modeling as a tool to integrate multilevel dynamic experimental data. Methods Mol Biol 2009, 563:197-218.
  • [33]Obourn JD, Koszewski NJ, Notides AC: Hormone- and DNA-binding mechanisms of the recombinant human estrogen receptor. Biochemistry 1993, 32:6229-6236.
  • [34]Bolger R, Wiese TE, Ervin K, Nestich S, Checovich W: Rapid screening of environmental chemicals for estrogen receptor binding capacity. Environ Health Perspect 1998, 106:551-557.
  • [35]Melamed M, Arnold SF, Notides AC, Sasson S: Kinetic analysis of the interaction of human estrogen receptor with an estrogen response element. J Steroid Biochem Mol Biol 1996, 57:153-159.
  • [36]Ozers MS, Hill JJ, Ervin K, Wood JR, Nardulli AM, Royer CA, Gorski J: Equilibrium binding of estrogen receptor with DNA using fluorescence anisotropy. J Biol Chem 1997, 272:30405-30411.
  • [37]Cheskis BJ, Karathanasis S, Lyttle CR: Estrogen receptor ligands modulate its interaction with DNA. J Biol Chem 1997, 272:11384-11391.
  • [38]Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson J, Nilsson S: Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol Pharmacol 1998, 54:105-112.
  • [39]Notides AC, Lerner N, Hamilton DE: Positive cooperativity of the estrogen receptor. Proc Natl Acad Sci U S A 1981, 78:4926-4930.
  • [40]McInerney EM, Katzenellenbogen BS: Different regions in activation function-1 of the human estrogen receptor required for antiestrogen- and estradiol-dependent transcription activation. J Biol Chem 1996, 271:24172-24178.
  • [41]Berthois Y, Pons M, Dussert C, Crastes de Paulet A, Martin PM: Agonist–antagonist activity of anti-estrogens in the human breast cancer cell line MCF-7: an hypothesis for the interaction with a site distinct from the estrogen binding site. Mol Cell Endocrinol 1994, 99:259-268.
  • [42]Reddel RR, Sutherland RL: Tamoxifen stimulation of human breast cancer cell proliferation in vitro: a possible model for tamoxifen tumour flare. Eur J Cancer Clin Oncol 1984, 20:1419-1424.
  • [43]Wakeling AE, Newboult E, Peters SW: Effects of antioestrogens on the proliferation of MCF-7 human breast cancer cells. J Mol Endocrinol 1989, 2:225-234.
  • [44]Osborne CK, Hobbs K, Trent JM: Biological differences among MCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Res Treat 1987, 9:111-121.
  • [45]Lebedeva G, Sorokin A, Faratian D, Mullen P, Goltsov A, Langdon S, Harrison DJ, Goryanin I: Model-based global sensitivity analysis as applied to identification of anti-cancer drug targets and biomarkers of drug resistance in ErbB2/3 network. Eur J Pharm Sci 2011, 46:244-258.
  • [46]Yoon J, Deisboeck TS: Investigating differential dynamics of the MAPK signaling cascade using a multi-parametric global sensitivity analysis. PLoS One 2009, 4:e4560.
  • [47]Zi Z, Zheng Y, Rundell AE, Klipp E: SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool. BMC Bioinformatics 2008, 9:342. BioMed Central Full Text
  • [48]Reddel RR, Murphy LC, Hall RE, Sutherland RL: Differential sensitivity of human breast cancer cell lines to the growth-inhibitory effects of tamoxifen. Cancer Res 1985, 45:1525-1531.
  • [49]Olea-Serrano N, Devleeschouwer N, Leclercq G, Heuson JC: Assay for estrogen and progesterone receptors of breast cancer cell lines in monolayer culture. Eur J Cancer Clin Oncol 1985, 21:965-973.
  • [50]Lonning PE, Haynes BP, Straume AH, Dunbier A, Helle H, Knappskog S, Dowsett M: Recent data on intratumor estrogens in breast cancer. Steroids 2011, 76:786-791.
  • [51]Kisanga ER, Gjerde J, Guerrieri-Gonzaga A, Pigatto F, Pesci-Feltri A, Robertson C, Serrano D, Pelosi G, Decensi A, Lien EA: Tamoxifen and metabolite concentrations in serum and breast cancer tissue during three dose regimens in a randomized preoperative trial. Clin Cancer Res 2004, 10:2336-2343.
  • [52]Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, et al.: Genome-wide analysis of estrogen receptor binding sites. Nat Genet 2006, 38:1289-1297.
  • [53]Welboren WJ, Stunnenberg HG, Sweep FC, Span PN: Identifying estrogen receptor target genes. Mol Oncol 2007, 1:138-143.
  • [54]Kuske B, Naughton C, Moore K, Macleod KG, Miller WR, Clarke R, Langdon SP, Cameron DA: Endocrine therapy resistance can be associated with high estrogen receptor alpha (ERalpha) expression and reduced ERalpha phosphorylation in breast cancer models. Endocr Relat Cancer 2006, 13:1121-1133.
  • [55]Won Jeong K, Chodankar R, Purcell DJ, Bittencourt D, Stallcup MR: Gene-specific patterns of coregulator requirements by estrogen receptor-alpha in breast cancer cells. Mol Endocrinol 2012, 26:955-966.
  • [56]Chapman SA, Asthagiri AR: Quantitative effect of scaffold abundance on signal propagation. Mol Syst Biol 2009, 5:313.
  • [57]Levchenko A, Bruck J, Sternberg PW: Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc Natl Acad Sci U S A 2000, 97:5818-5823.
  • [58]Bray D, Lay S: Computer-based analysis of the binding steps in protein complex formation. Proc Natl Acad Sci U S A 1997, 94:13493-13498.
  • [59]Sherman ME, Madigan MP, Lacey JV Jr, Potischman N, Carreon JD, Hartge P, Brinton LA: Ovarian volumes among women with endometrial carcinoma: associations with risk factors and serum hormones. Gynecol Oncol 2007, 107:431-435.
  • [60]Sakamoto T, Eguchi H, Omoto Y, Ayabe T, Mori H, Hayashi S: Estrogen receptor-mediated effects of tamoxifen on human endometrial cancer cells. Mol Cell Endocrinol 2002, 192:93-104.
  • [61]Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ: Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 2009, 20:1319-1329.
  • [62]Butt AJ, McNeil CM, Musgrove EA, Sutherland RL: Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 2005, 12(Suppl 1):S47-59.
  • [63]Criscitiello C, Fumagalli D, Saini KS, Loi S: Tamoxifen in early-stage estrogen receptor-positive breast cancer: overview of clinical use and molecular biomarkers for patient selection. Onco Targets Ther 2011, 4:1-11.
  • [64]Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, Wong J, Allred DC, Clark GM, Schiff R: Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 2003, 95:353-361.
  • [65]Gallo MA, Kaufman D: Antagonistic and agonistic effects of tamoxifen: significance in human cancer. Semin Oncol 1997, 24:S1-71-S71-80.
  • [66]Iman RL, Helton JC, Campbell JE: An approach to sensitivity analysis of computer-models .1. introduction, input variable selection and preliminary variable assessment. Journal of Quality Technology 1981, 13:174-183.
  • [67]Marino S, Hogue IB, Ray CJ, Kirschner DE: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 2008, 254:178-196.
  • [68]Gizzatkulov NM, Goryanin II, Metelkin EA, Mogilevskaya EA, Peskov KV, Demin OV: DBSolve Optimum: a software package for kinetic modeling which allows dynamic visualization of simulation results. BMC Syst Biol 2010, 4:109. BioMed Central Full Text
  • [69]Sundials - SUite of Nonlinear and DIfferential/ALgebraic equation Solvers https://computation.llnl.gov/casc/sundials/ webcite
  • [70]Brunner N, Boulay V, Fojo A, Freter CE, Lippman ME, Clarke R: Acquisition of hormone-independent growth in MCF-7 cells is accompanied by increased expression of estrogen-regulated genes but without detectable DNA amplifications. Cancer Res 1993, 53:283-290.
  • [71]Brunner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J, Frandsen T, Spang-Thomsen M, Fuqua SA, Clarke R: MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. Cancer Res 1997, 57:3486-3493.
  • [72]Brunner N, Frandsen TL, Holst-Hansen C, Bei M, Thompson EW, Wakeling AE, Lippman ME, Clarke R: MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780. Cancer Res 1993, 53:3229-3232.
  • [73]Jisa E, Jungbauer A: Kinetic analysis of estrogen receptor homo- and heterodimerization in vitro. J Steroid Biochem Mol Biol 2003, 84:141-148.
  • [74]Iyer V, Struhl K: Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1996, 93:5208-5212.
  • [75]Rabani M, Levin JZ, Fan L, Adiconis X, Raychowdhury R, Garber M, Gnirke A, Nusbaum C, Hacohen N, Friedman N, et al.: Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol 2011, 29:436-442.
  • [76]Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M: Global quantification of mammalian gene expression control. Nature 2011, 473:337-342.
  文献评价指标  
  下载次数:76次 浏览次数:21次