期刊论文详细信息
BMC Systems Biology
Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli
Hiroshi Tanaka5  Tadashi Masuda1  Yoshihiro Usuda2  Yohei Yamada3  Masao Ichikawa5  Soichi Ogishima4  Yousuke Nishio6 
[1]Faculty of Symbiotic Systems Science, Fukushima University, Kanayagawa 1, Fukushima City, Fukushima 960-1296, Japan
[2]Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co. Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki City, Kanagawa 210-8681, Japan
[3]Pharmaceutical Custom Manufacturing Department, Ajinomoto Co. Inc., Kyobashi 1-chome 15-1, Chuo-ku, Tokyo 104-8315, Japan
[4]Current address: Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Seiryo-cho 4-1, Aoba-ku, Sendai-City, Miyagi 980-8575, Japan
[5]Department of Bioinformatics, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan
[6]Institute for Innovation, Ajinomoto Co. Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki City, Kanagawa 210-8681, Japan
关键词: Escherichia coli;    Phosphoglycerate kinase;    Sensitivity analysis;    Dynamic metabolic simulation;    L-glutamic acid fermentation;   
Others  :  1142197
DOI  :  10.1186/1752-0509-7-92
 received in 2012-12-27, accepted in 2013-09-13,  发布年份 2013
PDF
【 摘 要 】

Background

Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required.

Results

We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model.

Conclusions

In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.

【 授权许可】

   
2013 Nishio et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328003605965.pdf 1611KB PDF download
Figure 4. 90KB Image download
Figure 3. 102KB Image download
Figure 2. 29KB Image download
Figure 1. 100KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Kurata H, Masaki K, Sumida Y, Iwasaki R: CADLIVE dynamic simulator: direct link of biochemical networks to dynamic models. Genome Res 2005, 15:590-600.
  • [2]Toyoda T, Wada A: Omic space: coordinate-based integration and analysis of genomic phenomic interactions. Bioinformatics 2004, 20:1759-1765.
  • [3]Santillan M, Mackey MC: Dynamic regulation of the tryptophan operon: a modeling study and comparison with experimental data. Proc Natl Acad Sci USA 2001, 98:1364-1369.
  • [4]Ikeda M: Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 2006, 69:615-626.
  • [5]Kimura E: Metabolic engineering of glutamate production. Adv Biochem Eng Biotechnol 2003, 79:37-57.
  • [6]Sano C: History of glutamate production. Am J Clin Nutr 2009, 90:728S-732S.
  • [7]Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T: Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 2007, 73:1308-1319.
  • [8]Wendisch VF, Bott M, Eikmanns BJ: Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 2006, 9:268-274.
  • [9]Imaizumi A, Kojima H, Matsui K: The effect of intracellular ppGpp levels on glutamate and lysine overproduction in Escherichia coli. J Biotechnol 2006, 125:328-337.
  • [10]Usuda Y, Nishio Y, Iwatani S, Van Dien SJ, Imaizumi A, Shimbo K, Kageyama N, Iwahata D, Miyano H, Matsui K: Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production. J Biotechnol 2010, 147:17-30.
  • [11]Varma A, Boesch BW, Palsson BO: Biochemical production capabilities of Escherichia coli. Biotechnol Bioeng 1993, 42:59-73.
  • [12]Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ: Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2009, 7:129-143.
  • [13]Pharkya P, Burgard AP, Maranas CD: Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol Bioeng 2003, 84:887-899.
  • [14]Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED: Metabolic network structure determines key aspects of functionality and regulation. Nature 2002, 420:190-193.
  • [15]Klamt S, Stelling J, Ginkel M, Gilles ED: FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 2003, 19:261-269.
  • [16]Kitayama T, Kinoshita A, Sugimoto M, Nakayama Y, Tomita M: A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles. Theor Biol Med Model 2006, 3:24. BioMed Central Full Text
  • [17]Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M: Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 2002, 79:53-73.
  • [18]Mogilevskaya E, Bagrova N, Plyusnina T, Gizzatkulov N, Metelkin E, Goryacheva E, Smirnov S, Kosinsky Y, Dorodnov A, Peskov K, Karelina T, Goryanin I, Demin O: Kinetic modeling as a tool to integrate multilevel dynamic experimental data. Methods Mol Biol 2009, 563:197-218.
  • [19]Nishio Y, Usuda Y, Matsui K, Kurata H: Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Mol Syst Biol 2008, 4:160.
  • [20]Shiio I, Ozaki H: Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium. J Biochem 1970, 68:633-647.
  • [21]Shiio I, Ozaki H, Ujigawa K: Regulation of citrate synthase in Brevibacterium flavum, a glutamate-producing bacterium. J Biochem 1977, 82:395-405.
  • [22]Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke KU, Sahm H: Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 1994, 140:1817-1828.
  • [23]Nellemann LJ, Holm F, Atlung T, Hansen FG: Cloning and characterization of the Escherichia coli phosphoglycerate kinase (pgk) gene. Gene 1989, 77:185-191.
  • [24]LaPorte DC, Koshland DE Jr: A protein with kinase and phosphatase activities involved in regulation of tricarboxylic acid cycle. Nature 1982, 300:458-460.
  • [25]Miller SP, Chen R, Karschnia EJ, Romfo C, Dean A, LaPorte DC: Locations of the regulatory sites for isocitrate dehydrogenase kinase/phosphatase. J Biol Chem 2000, 275:833-839.
  • [26]Bardey V, Vallet C, Robas N, Charpentier B, Thouvenot B, Mougin A, Hajnsdorf E, Régnier P, Springer M, Branlant C: Characterization of the molecular mechanisms involved in the differential production of erythrose-4-phosphate dehydrogenase, 3-phosphoglycerate kinase and class II fructose-1,6-bisphosphate aldolase in Escherichia coli. Mol Microbiol 2005, 57:1265-1287.
  • [27]Katashkina JI, Hara Y, Golubeva LI, Andreeva IG, Kuvaeva TM, Mashko SV: Use of the lambda Red-recombineering method for genetic engineering of Pantoea ananatis. BMC Mol Biol 2009, 10:34. BioMed Central Full Text
  • [28]Takikawa R, Hara Y: L-amino acid producing microorganism and method for producing an L-amino acid. US patent #7919284
  • [29]Hara Y, Kadotani N, Izui H, Katashkina JI, Kuvaeva TM, Andreeva IG, Golubeva LI, Malko DB, Makeev VJ, Mashko SV, Kozlov YI: The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential. Appl Microbiol Biotechnol 2012, 93:331-341.
  • [30]Gerike U, Hough DW, Russell NJ, Dyall-Smith ML, Danson MJ: Citrate synthase and 2-methylcitrate synthase: structural, functional and evolutionary relationships. Microbiology 1998, 144:929-935.
  • [31]Nishio Y, Suzuki T, Matsui K, Usuda Y: Metabolic control of the TCA cycle by the YdcI transcriptional regulator in Escherichia coli. J Microb Biochem Technol 2013, 5:59-67.
  • [32]Waegeman H, Beauprez J, Moens H, Maertens J, De Mey M, Foulquié-Moreno MR, Heijnen JJ, Charlier D, Soetaert W: Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiol 2011, 11:70. BioMed Central Full Text
  • [33]Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M: Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. J. Biosci Bioeng 2008, 106:51-58.
  • [34]Sauer U, Eikmanns BJ: The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 2005, 29:765-794.
  • [35]Neidhardt FC, Curtiss R: Escherichia coli and Salmonella cellular and molecular biology. Washington D.C.: ASM Press; 1999.
  • [36]Van Dien SJ, Iwatani S, Usuda Y, Matsui K: Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression. J Biosci Bioeng 2006, 102:34-40.
  • [37]Neidhardt FC, Ingraham JL, Schaechter M: Physiology of the bacterial cell: a molecular approach. Sunderland, Mass: Sinauer Associates; 1990.
  文献评价指标  
  下载次数:16次 浏览次数:16次