期刊论文详细信息
BMC Complementary and Alternative Medicine
Biofilm formation of Clostridium difficile and susceptibility to Manuka Honey
Charles A Brown1  Eric S Donkor2  Eric N Hammond3 
[1] Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Ghana, Accra, Ghana;Department of Microbiology, University of Ghana Medical School, Accra, Ghana;Department of Microbiology, University of Wales Institute Cardiff, Cardiff CF1 3TL, UK
关键词: Susceptibility;    Antibacterial;    Manuka honey;    Biofilm;    Clostridium difficile;   
Others  :  1086782
DOI  :  10.1186/1472-6882-14-329
 received in 2014-05-23, accepted in 2014-08-27,  发布年份 2014
【 摘 要 】

Background

Biofilm bacteria are relatively more resistant to antibiotics. The escalating trend of antibiotic resistance higlights the need for evaluating alternative potential therapeutic agents with antibacterial properties. The use of honey for treating microbial infections dates back to ancient times, though antimicrobial properties of Manuka honey was discovered recently. The aim of this study was to demonstrate biofilm formation of specific Clostridium difficile strains and evaluate susceptibility of the biofilm to Manuka honey.

Methods

Three C. difficile strains were used in the study including the ATCC 9689 strain, a ribotype 027 strain and a ribotype 106 strain. Each test strain was grown in sterile microtitre plates and incubated at 37°C for 24 and 48 hours in an anaerobic cabinet to allow formation of adherent growth (biofilm) on the walls of the wells. The effect of Manuka honey on the biofilms formed was investigated at varying concentrations of 1-50% (w/v) of Manuka honey.

Results

The three C. difficile strains tested formed biofilms after 24 hours with the ribotype 027 strain producing the most extensive growth. There was no significant difference (p > 0.05) found between the amount of biofilms formed after 24 and 48 hours of incubation for each of the three C. difficile strains. A dose–response relationship between concentration of Manuka honey and biofilm formation was observed for all the test strains, and the optimum Manuka honey activity occurred at 40-50% (v/v).

Conclusion

Manuka honey has antibacterial properties capable of inhibiting in vitro biofilm formed by C. difficile.

【 授权许可】

   
2014 Hammond et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 3. 57KB Image download
Figure 2. 57KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Wolcott R, Cutting KF, Dowd SE: Surgical site infections: biofilms, dehiscence and delayed healing. Wound UK 2008, 4(4):110-112.
  • [2]Donlan RM: Biofilms and device-associated Infections. Emerg Infect Dis 2001, 7(2):277-281.
  • [3]Rosenthal VD: Device-associated nosocomial infections in limited-resources countries: Findings of the International Nosocomial Infection Control Consortium (INICC). Am J Infect Control 2008, 36(10):171.e7-12.
  • [4]Denkhaus E, Meisen S, Telgheder U, Wingender J: Chemical and physical methods for characterisation of biofilms. Microchimica Acta 2007, 158(1–2):1-27.
  • [5]Cooper RA, Jenkins L: The inhibition of biofilms of Pseudomonas aeruginosa with Manuka honey. Ostomy Wound Manage 2008, 54(4):70.
  • [6]Oliveria M, Numes SF, Carneiro C, Bexiga R, Bernardo F, Vilela CL: Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epididermidis mastitis isolates. Vet Microbiol 2007, 124(1–2):187-191.
  • [7]Dawson LF, Valiente E, Faulds-Pain A, Donahue EH, Wren BW: Characterisation of Clostridium difficile Biofilm Formation, a Role for Spo0A. PLoS One 2012, 7(12):e50527.
  • [8]Dapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, Scarselli M, Minton NP, Serruto D, Unnikrishnan M: Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 2013, 195(3):545-555.
  • [9]Donelli G, Vuotto C, Cardines R, Mastrantonio P: Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol Med Microbiol 2012, 65(2):318-325.
  • [10]Dapa T, Unnikrishnan M: Biofilm formation by Clostridium difficile. Gut Microbes 2013, 4(5):397-402.
  • [11]Semenyuk EG, Laning ML, Foley J, Johnston PF, Knight KL, Gerding DN, Driks A: Spore formation and toxin production in Clostridium difficile biofilms. PLoS One 2014, 9(1):e87757.
  • [12]Crowther GS, Chilton CH, Todhunter SL, Nicholson S, Freeman J, Baines SD, Wilcox MH: Development and validation of a chemostat gut model to study both planktonic and biofilm modes of growth of clostridium difficile and human microbiota. PLoS One 2014, 9(2):e88396.
  • [13]Lembke C, Podbielsk A, Hidalgo-Grass C, Jona L, Hanski E, Kreikemeyer B: Characterization of biofilm formation by clinically relevant serotypes of group A streptococci. Appl Environ Microbiol 2006, 72:2864-2875.
  • [14]Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T: Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 2003, 48:1511-1524.
  • [15]Hancock LE, Perego M: The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 2004, 186:5629-5639.
  • [16]Cvitkovitch DG, Li YH, Ellen RP: Quorum sensing and biofilm formation in streptococcal infections. J Clin Investig 2003, 112:1626-1632.
  • [17]Maddocks SE, Lopez MS, Rowlands RS, Cooper RA: Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology 2012, 158:781-790.
  • [18]Rodica G, Bruno H, Elise F, Colette G, Marc D: Epidemiology patterns and hospital characteristics associated with increased incident of Clostridium difficile infection in Qubec, Canada, 1998–2006. Infect Control Hosp Epidemiol 2010, 31(9):939-947.
  • [19]Barbut F, Jones G, Eckert C: Epidemiology and control of Clostridium difficile infections in healthcare settings: an update. Curr Opin Infect Dis 2011, 24(4):370-376.
  • [20]The Centers for Disease Control and Prevention (CDC): Antibiotic resistance threats in the United States. 2013. [http://www.cdc.gov/drugresistance/threat-report-2013/ webcite] [Accessed on 16.09.2010]
  • [21]Hammond E, Donkor ES: Antibacterial effect of Manuka honey on Clostridium difficile. BMC Res Notes 2013, 6:188. BioMed Central Full Text
  • [22]Answar H, Dasgupta MK, Costerton JW: Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother 1990, 34(11):2043-2046.
  • [23]Consterton JW: Overview of microbial biofilms. J Indus Microbial 1995, 15:137-140.
  • [24]Danese PN, Pratt LA, Kolter R: Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 2000, 182(12):3593-3596.
  • [25]Freeman J, Bauer MP, Baines SD, J. Corver J, Fawley WN, Goorhuis B, Kuijper EJ, Wilcox MH: The Changing Epidemiology of Clostridium difficile Infections. Clin. Microbiol. Rev. 2010, 23(3):529-549.
  • [26]Okhiria OA, Henriques AFM, Burton NF: Honey modulates biofilms of Pseudomonas aeruginosa in a time and dose dependent manner. J ApiProd ApiMed Sci 2009, 1:6-10.
  • [27]Fux CA, Consterton JW, Stewart PS, Stoodley P: Survival strategies of infectious biofilms. Trends Microbiol 2005, 13(1):34-40.
  • [28]Ashby MJ, Neale JE, Knott SJ, Critchley IA: Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. J Antimicrob Chemother 1994, 33:443-452.
  • [29]Consterton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause of persistent infection. Science 1999, 284:1318-1322.
  • [30]Alandejani T, Marsan JG, Ferris W, Slinger R, Chan F: Effectiveness of honey on S. aureus and P. aeruginosa biofilms. Otolaryngol Head Neck Surg 2008, 14(1):114-118.
  • [31]Ansari MJ, Al-Ghamdi A, Usmani S, Al-Waili NS, Sharma D, Nuru A, Al-Attal Y: Effect of jujube honey on Candida albicans growth and biofilm formation. Arch Med Res 2013, 44(5):352-360.
  • [32]Molan PC, Russell KM: Non-peroxide antibacterial activity in some New Zealand honeys. J Apic Res 1988, 27(1):62-67.
  • [33]Atrott J, Haberlau S, Henle T: Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey. Carbohydr Res 2012, 361:7-11.
  • [34]Mavric E, Wittmann S, Barth G, Henle T: Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res 2008, 52(4):483-489.
  • [35]Mukherjee S, Chaki S, Das S, Sen S, Dutta SK, Dastidar SG: Distinct synergistic action of piperacillin and methylglyoxal against Pseudomonas aeruginosa. Indian J Exp Biol 2011, 49:547-551.
  文献评价指标  
  下载次数:33次 浏览次数:17次