期刊论文详细信息
BMC Research Notes
Microsatellite markers for identification and parentage analysis in the European wild boar (Sus scrofa)
Albano Beja-Pereira2  Nuno Monteiro1  Gyula Varga4  József Buzgó4  István Anton3  Attila Zsolnai9  Juan Carranza5  Pedro Fernández-Llario8  Pedro Santos6  Javier Pérez-González7  Vânia Costa2 
[1] CEBIMED, Faculty of Health Sciences, University Fernando Pessoa, R. Carlos da Maia, 296, 4200-150, Porto, Portugal;Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto (CIBIO-UP), Rua Padre Armando Quintas 7, 4485-661, Vairão, Portugal;Research Institute for Animal Breeding and Nutrition, H-2053, Herceghalom, Hungary;SEFAG Forest Management and Wood Industry Share Company, Kaposvár, Hungary;Ungulate Research Unit, CRCP, University of Córdoba, 14071, Córdoba, Spain;Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Herdade da Mitra, 7002-554, Évora, Portugal;Department of Animal & Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK;Biology and Ethology Unit, University of Extremadura, 10071, Cáceres, Spain;University of Kaposvár, H-7400, Kaposvár, Hungary
关键词: Wild boar;    Microsatellite markers;    Individual identification;    Parentage assignment;    Sus scrofa;   
Others  :  1165793
DOI  :  10.1186/1756-0500-5-479
 received in 2012-02-21, accepted in 2012-08-22,  发布年份 2012
PDF
【 摘 要 】

Background

The wild boar (Sus scrofa) is among the most widespread mammal species throughout the old world. Presently, studies concerning microsatellites in domestic pigs and wild boars have been carried out in order to investigate domestication, social behavior and general diversity patterns among either populations or breeds. The purpose of the current study is to develop a robust set of microsatellites markers for parentage analyses and individual identification.

Findings

A set of 14 previously reported microsatellites markers have been optimized and tested in three populations from Hungary, Portugal and Spain, in a total of 167 samples. The results indicate high probabilities of exclusion (0.99999), low probability of identity (2.0E-13 – 2.5E-9) and a parentage assignment of 100%.

Conclusions

Our results demonstrate that this set of markers is a useful and efficient tool for the individual identification and parentage assignment in wild boars.

【 授权许可】

   
2012 Costa et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416033724105.pdf 179KB PDF download
Figure 1. 114KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Chen K, Baxter T, Muir W, Groenen M, Schook L: Genetic Resources, Genome Mapping and Evolutionary Genomics of the Pig (Sus scrofa). Int J Biol Sci 2007, 3:153-165.
  • [2]Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslev E, et al.: Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication. Science 2005, 307:1618-1621.
  • [3]Aguilera-Reyes U, Zavala-Páramo G, Valdez-Alarcón JJ, Cano-Camacho H, García-López GI, Pescador-Salas N: Multiple mating and paternity determinations in domestic swine (Sus scrofa). Anim Res 2006, 55:409-417.
  • [4]Poteaux C, Baubet E, Kaminski G, Brandt S, Dobson FS, Baudoin C: Socio-genetic structure and mating system of a wild boar population. J Zool 2009, 278:116-125.
  • [5]Delgado R, Fernández-Llario P, Azevedo M, Beja-Pereira A, Santos P: Paternity assessment in free-ranging wild boar (Sus scrofa) - Are littermates full-sibs? Mammalian Biology - Zeitschrift fur Saugetierkunde 2008, 73:169-176.
  • [6]Bruford MW, Bradley DG, Luikart G: DNA markers reveal the complexity of livestock domestication. Nat Rev Genet 2003, 4:900-910.
  • [7]Schlotterer C: The evolution of molecular markers [mdash] just a matter of fashion? Nat Rev Genet 2004, 5:63-69.
  • [8]Hampton J, Pluske JR, Spencer PBS: A preliminary genetic study of the social biology of feral pigs in south-western Australia and the implications for management. Wildl Res 2004, 31:375-381.
  • [9]Chang WH, Chu HP, Jiang YN, Li SH, Wang Y, Chen CH, Chen KJ, Lin CY, Ju YT: Genetic variation and phylogenetics of Lanyu and exotic pig breeds in Taiwan analyzed by nineteen microsatellite markers. J Anim Sci 2009, 87:1-8.
  • [10]Li K, Geng J, Qu J, Zhang Y, Hu S: Effectiveness of 10 polymorphic microsatellite markers for parentage and pedigree analysis in plateau pika (Ochotona curzoniae). BMC Genet 2010, 11:101.
  • [11]Fernández-Llario P, Mateos-Quesada P: Population structure of the wild boar (Sus scrofa) in two Mediterranean habitats in the western Iberian Peninsula. Folia Zoologica 2003, 52:143-148.
  • [12]Wang J: Sibship Reconstruction From Genetic Data With Typing Errors. Genetics 2004, 166:1963-1979.
  • [13]Jones OR, Wang J: COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 2010, 10:551-555.
  • [14]Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW: A Microsatellite Linkage Map of the Porcine Genome. Genetics 1994, 136:231-245.
  • [15]Ellegren H, Chowdhary BP, Fredholm M, Hoyheim B, Johansson M, Nielsen PB, Thomsen PD, Andersson L: A physically anchored linkage map of pig chromosome 1 uncovers sex- and position-specific recombination rates. Genomics 1994, 24:342-350.
  • [16]Alexander L, Troyer D, Rohrer G, Smith T, Schook L, Beattie C: Physical assignments of 68 porcine cosmid and lambda clones containing polymorphic microsatellites. Mamm Genome 1996, 7:368-372.
  • [17]Ernst CW, Robic A, Yerle M, Wang L, Rothschild MF: Mapping of calpastatin and three microsatellites to porcine chromosome 2q2·1-q2·4. Anim Genet 1998, 29:212-215.
  • [18]Fredholm M, Wintero AK, Christensen K, Kristensen B, Nielsen PB, Davies W, Archibald A: Characterization of 24 porcine (dA-dC)n-(dT-dG)n microsatellites: genotyping of unrelated animals from four breeds and linkage studies. Mamm Genome 1993, 4:187-192.
  • [19]Ellegren H, Chowdhary BP, Johansson M, Marklund L, Fredholm M, Gustawon I, Andersson L: A Primary Linkage Map of the Porcine Genome Reveals a Low Rate of Genetic Recombination. Genetics 1994, 137:1089-1110.
  • [20]DeWoody J, Nason JD, Hipkins V: Mitigating scoring errors in microsatellite data from wild populations. Molecular Ecology Notes 2006, 6:951-957.
  • [21]Peakall ROD, Smouse PE: Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 2006, 6:288-295.
  • [22]Kalinowski ST, Taper ML, Marshall TC: Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 2007, 16:1099-1106.
  • [23]Raymond M, Rousset F: GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J Hered 1995, 86:248-249.
  文献评价指标  
  下载次数:20次 浏览次数:18次