期刊论文详细信息
BMC Cancer
TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells
Dieter Adam2  Holger Kalthoff3  Stefan Schütze2  Dieter Kabelitz2  Anna Trauzold3  Christoph Arenz1  Christian Röder3  Supandi Winoto-Morbach2  Parvin Davarnia2  Stephan Philipp2  Susann Voigt2 
[1]Institut für Chemie der Humboldt-Universität, Berlin, Germany
[2]Institut für Immunologie, Christian-Albrechts-Universität, Michaelisstrasse 5, 24105 Kiel, Germany
[3]Sektion für Molekulare Onkologie, Institut für Experimentelle Tumorforschung, Christian-Albrechts-Universität, Kiel, Germany
关键词: Chemotherapy;    Ceramide;    TNF;    TRAIL;    Programmed necrosis;   
Others  :  859083
DOI  :  10.1186/1471-2407-14-74
 received in 2013-06-25, accepted in 2013-12-18,  发布年份 2014
PDF
【 摘 要 】

Background

The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin.

Methods

Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning.

Results

TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines.

Conclusions

Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of tumor cells, and that this treatment may represent a promising new option for the future development of combination therapies. Our data also suggest that RIPK3 expression may serve as a potential predictive marker for the sensitivity of tumor cells to programmed necrosis and extend the previously established role of ceramide as a key mediator of death receptor-induced programmed necrosis (and thus as a potential target for future therapies) also to the tumor cell lines examined here.

【 授权许可】

   
2014 Voigt et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724072654245.pdf 1999KB PDF download
142KB Image download
31KB Image download
54KB Image download
101KB Image download
137KB Image download
100KB Image download
【 图 表 】

【 参考文献 】
  • [1]Degterev A, Yuan J: Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 2008, 9:378-390.
  • [2]Vercammen D, Beyaert R, Denecker G, Goossens V, van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P: Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 1998, 187:1477-1485.
  • [3]Thon L, Möhlig H, Mathieu S, Lange A, Bulanova E, Winoto-Morbach S, Schütze S, Bulfone-Paus S, Adam D: Ceramide mediates caspase-independent programmed cell death. FASEB J 2005, 19:1945-1956.
  • [4]Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G: Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010, 11:700-714.
  • [5]Mocarski ES, Upton JW, Kaiser WJ: Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat Rev Immunol 2012, 12:79-88.
  • [6]Strelow A, Bernardo K, Adam-Klages S, Linke T, Sandhoff K, Krönke M, Adam D: Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J Exp Med 2000, 192:601-611.
  • [7]Thon L, Mathieu S, Kabelitz D, Adam D: The murine TRAIL receptor signals caspase-independent cell death through ceramide. Exp Cell Res 2006, 312:3808-3821.
  • [8]Huang WC, Chen CL, Lin YS, Lin CF: Apoptotic sphingolipid ceramide in cancer therapy. J Lipids 2011, 2011:565316.
  • [9]Hellwig CT, Rehm M: TRAIL signaling and synergy mechanisms used in TRAIL-based combination therapies. Mol Cancer Ther 2012, 11:3-13.
  • [10]Guo Y, Chen C, Zheng Y, Zhang J, Tao X, Liu S, Zheng D, Liu Y: A novel anti-human DR5 monoclonal antibody with tumoricidal activity induces caspase-dependent and caspase-independent cell death. J Biol Chem 2005, 280:41940-41952.
  • [11]Roth AG, Drescher D, Yang Y, Redmer S, Uhlig S, Arenz C: Potent and selective inhibition of acid sphingomyelinase by bisphosphonates. Angew Chem Int Ed Engl 2009, 48:7560-7563.
  • [12]Samapati R, Yang Y, Yin J, Stoerger C, Arenz C, Dietrich A, Gudermann T, Adam D, Wu S, Freichel M, et al.: Lung endothelial Ca2+ and permeability response to platelet-activating factor is mediated by acid sphingomyelinase and transient receptor potential classical 6. Am J Resp Crit Care Med 2012, 185:160-170.
  • [13]Egberts JH, Schniewind B, Schafmayer C, Kruse ML, Sipos B, Fändrich F, Kalthoff H, Tepel J: Establishment of a novel orthotopic xenograft model of human gallbladder carcinoma. Clin Exp Metastasis 2007, 24:141-148.
  • [14]Sipos B, Möser S, Kalthoff H, Török V, Löhr M, Klöppel G: A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch 2003, 442:444-452.
  • [15]Kurdow R, Schniewind B, Zoefelt S, Boenicke L, Boehle AS, Dohrmann P, Kalthoff H: Apoptosis by gemcitabine in non-small cell lung cancer cell line KNS62 is induced downstream of caspase 8 and is profoundly blocked by Bcl-xL over-expression. Langenbecks Arch Surg 2005, 390:243-248.
  • [16]Juhl H, Helmig F, Baltzer K, Kalthoff H, Henne-Bruns D, Kremer B: Frequent expression of complement resistance factors CD46, CD55, and CD59 on gastrointestinal cancer cells limits the therapeutic potential of monoclonal antibody 17-1A. J Surg Oncol 1997, 64:222-230.
  • [17]Sosna J, Voigt S, Mathieu S, Lange A, Thon L, Davarnia P, Herdegen T, Linkermann A, Rittger A, Chan FK, et al.: TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol Life Sci 2014, 71:331-348.
  • [18]Bligh V, Dyer WJ: A rapid method of total lipid extraction. Can Biochem J Physiol 1959, 37:911-917.
  • [19]Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C: Clonogenic assay of cells in vitro. Nat Protoc 2006, 1:2315-2319.
  • [20]Kaczmarek A, Vandenabeele P, Krysko DV: Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 2013, 38:209-223.
  • [21]Sosna J, Voigt S, Mathieu S, Kabelitz D, Trad A, Janssen O, Meyer-Schwesinger C, Schütze S, Adam D: The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Commun Signal 2013, 11:76. BioMed Central Full Text
  • [22]He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009, 137:1100-1111.
  • [23]Aggarwal BB, Natarajan K: Tumor necrosis factors - developments during the last decade. Eur Cytokine Netw 1996, 7:93-124.
  • [24]Chan FK, Baehrecke EH: RIP3 finds partners in crime. Cell 2012, 148:17-18.
  • [25]Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X: Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase. Cell 2012, 148:213-227.
  • [26]Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG: Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 2012, 109:5322-5327.
  • [27]Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, Ma J, Chen W, Zhang Y, Zhou X, et al.: Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 2013, 23:994-1006.
  • [28]Festjens N, Vanden Berghe T, Vandenabeele P: Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 2006, 1757:1371-1387.
  • [29]Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009, 325:332-336.
  • [30]Linkermann A, Bräsen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U, Krautwald S: Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 2012, 81:751-761.
  • [31]Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009, 137:1112-1123.
  • [32]Kumar A, Eby MT, Sinha S, Jasmin A, Chaudhary PM: The ectodermal dysplasia receptor activates the nuclear factor-kappaB, JNK, and cell death pathways and binds to ectodysplasin A. J Biol Chem 2001, 276:2668-2677.
  • [33]Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F, Takahashi N, Sergent O, Lagadic-Gossmann D, Vandenabeele P, et al.: TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 2012, 19:2003-2014.
  • [34]Meurette O, Rebillard A, Huc L, Le Moigne G, Merino D, Micheau O, Lagadic-Gossmann D, Dimanche-Boitrel MT: TRAIL induces receptor-interacting protein 1-dependent and caspase-dependent necrosis-like cell death under acidic extracellular conditions. Cancer Res 2007, 67:218-226.
  • [35]Hunter TB, Manimala NJ, Luddy KA, Catlin T, Antonia SJ: Paclitaxel and TRAIL synergize to kill paclitaxel-resistant small cell lung cancer cells through a caspase-independent mechanism mediated through AIF. Anticancer Res 2011, 31:3193-3204.
  • [36]Engel JB, Martens T, Hahne JC, Häusler SF, Krockenberger M, Segerer S, Djakovic A, Meyer S, Dietl J, Wischhusen J, Honig A: Effects of lobaplatin as a single agent and in combination with TRAIL on the growth of triple-negative p53-mutated breast cancers in vitro. Anticancer Drugs 2012, 23:426-436.
  • [37]Katz SI, Zhou L, Chao G, Smith CD, Ferrara T, Wang W, Dicker DT, El-Deiry WS: Sorafenib inhibits ERK1/2 and MCL-1(L) phosphorylation levels resulting in caspase-independent cell death in malignant pleural mesothelioma. Cancer Biol Ther 2009, 8:2406-2416.
  • [38]Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, et al.: Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000, 6:797-801.
  • [39]Li M, Ona VO, Guégan C, Chen M, Jackson-Lewis V, Andrews LJ, Olszewski AJ, Stieg PE, Lee JP, Przedborski S, Friedlander RM: Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 2000, 288:335-339.
  • [40]Cauwels A, Janssen B, Waeytens A, Cuvelier C, Brouckaert P: Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat Immunol 2003, 4:387-393.
  文献评价指标  
  下载次数:26次 浏览次数:6次