期刊论文详细信息
BMC Microbiology
Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1
Kazuya Watanabe2  Hideaki Nojiri1  Atsushi Kouzuma2  Takuya Kasai2 
[1] Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku 113-8657, Tokyo, Japan;School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan
关键词: Shewanella;    Transcriptional regulation;    Outer membrane cytochrome;    Extracellular electron transfer;   
Others  :  1221683
DOI  :  10.1186/s12866-015-0406-8
 received in 2014-11-27, accepted in 2015-03-11,  发布年份 2015
PDF
【 摘 要 】

Background

Shewanella oneidensis MR-1 is capable of reducing extracellular electron acceptors, such as metals and electrodes, through the Mtr respiratory pathway, which consists of the outer membrane cytochromes OmcA and MtrC and associated proteins MtrA and MtrB. These proteins are encoded in the mtr gene cluster (omcA-mtrCAB) in the MR-1 chromosome.

Results

Here, we investigated the transcriptional mechanisms for the mtr genes and demonstrated that omcA and mtrC are transcribed from two upstream promoters, PomcA and PmtrC, respectively. In vivo transcription and in vitro electrophoretic mobility shift assays revealed that a cAMP receptor protein (CRP) positively regulates the expression of the mtr genes by binding to the upstream regions of PomcA and PmtrC. However, the expression of omcA and mtrC was differentially regulated in response to culture conditions; specifically, the expression from PmtrC was higher under aerobic conditions than that under anaerobic conditions with fumarate as an electron acceptor, whereas expression from PomcA exhibited the opposite trend. Deletion of the region upstream of the CRP-binding site of PomcA resulted in a significant increase in promoter activity under aerobic conditions, demonstrating that the deleted region is involved in the negative regulation of PomcA.

Conclusions

Taken together, the present results indicate that transcription of the mtr genes is regulated by multiple promoters and regulatory systems, including the CRP/cAMP-dependent regulatory system and yet-unidentified negative regulators.

【 授权许可】

   
2015 Kasai et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150803035532169.pdf 1008KB PDF download
Figure 6. 35KB Image download
Figure 5. 25KB Image download
Figure 4. 16KB Image download
Figure 3. 14KB Image download
Figure 2. 70KB Image download
Figure 1. 16KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Myers CR, Nealson KH. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 1988; 240:1319-21.
  • [2]Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ et al.. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol. 1999; 49:705-24.
  • [3]Flynn TM, O’Loughlin EJ, Mishra B, DiChristina TJ, Kemner KM. Sulfur-mediated electron shuttling during bacterial iron reduction. Science. 2014; 344:1039-42.
  • [4]Hau HH, Gralnick JA. Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol. 2007; 61:237-58.
  • [5]Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D. Electroactive bacteria-molecular mechanisms and genetic tools. Appl Microbiol Biotechnol. 2014; 98:8481-95.
  • [6]Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR. Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One. 2011; 6:e16649.
  • [7]Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio. 2010; 1:1-8.
  • [8]Nealson KH, Saffarini D. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol. 1994; 48:311-43.
  • [9]Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng. 2002; 80:637-49.
  • [10]Hau HH, Gilbert A, Coursolle D, Gralnick JA. Mechanism and consequences of anaerobic respiration of cobalt by Shewanella oneidensis strain MR-1. Appl Environ Microbiol. 2008; 74:6880-6.
  • [11]Carpentier W, Sandra K, De Smet I, Brigé A, De Smet L, Van Beeumen J. Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol. 2003; 69:3636-9.
  • [12]Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS et al.. Towards environmental systems biology of Shewanella. Nat Rev Microbiol. 2008; 6:592-603.
  • [13]Taylor BL, Zhulin IB. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev. 1999; 63:479-506.
  • [14]Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD et al.. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol. 2002; 20:1118-23.
  • [15]Kim BH, Kim HJ, Hyun MS, Park DH. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol. 1999; 9:127-31.
  • [16]Shi L, Squier TC, Zachara JM, Fredrickson JK. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol. 2007; 65:12-20.
  • [17]Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA et al.. Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriol. 2006; 188:4705-14.
  • [18]Lower BH, Shi L, Yongsunthon R, Droubay TC, McCready DE, Lower SK. Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J Bacteriol. 2007; 189:4944-52.
  • [19]Xiong Y, Shi L, Chen B, Mayer MU, Lower BH, Londer Y et al.. High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J Am Chem Soc. 2006; 128:13978-9.
  • [20]Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A. 2008; 105:3968-73.
  • [21]Von Canstein H, Ogawa J, Shimizu S, Lloyd JR. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol. 2008; 74:615-23.
  • [22]Coursolle D, Baron DB, Bond DR, Gralnick JA. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol. 2010; 192:467-74.
  • [23]Mitchell AC, Peterson L, Reardon CL, Reed SB, Culley DE, Romine MR et al.. Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation, and detachment during respiration on hematite. Geobiology. 2012; 10:355-70.
  • [24]Saffarini DA, Schultz R, Beliaev A. Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. J Bacteriol. 2003; 185:3668-71.
  • [25]Charania MA, Brockman KL, Zhang Y, Banerjee A, Pinchuk GE, Fredrickson JK et al.. Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol. 2009; 191:4298-306.
  • [26]Myers CR, Myers JM. Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDa c-type cytochrome. Biochim Biophys Acta. 1997; 1326:307-18.
  • [27]Beliaev AS, Klingeman DM, Klappenbach JA, Wu L, Romine MF, Tiedje JM et al.. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol. 2005; 187:7138-45.
  • [28]Teal TK, Lies DP, Wold BJ, Newman DK. Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl Environ Microbiol. 2006; 72:7324-30.
  • [29]Rosenbaum MA, Bar HY, Beg QK, Segrè D, Booth J, Cotta MA et al.. Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III) citrate or oxygen as terminal electron acceptor. PLoS One. 2012; 7:e30827.
  • [30]Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA et al.. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A. 2014; 111:12883-8.
  • [31]Beliaev AS, Saffarini DA, McLaughlin JL, Hunnicutt D. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol. 2001; 39:722-30.
  • [32]Shao W, Price MN, Deutschbauer AM, Romine MF, Arkin AP. Conservation of transcription start sites within genes across a bacterial genus. mBio. 2014; 5:e01398-14.
  • [33]Mitra A, Kesarwani AK, Pal D, Nagaraja V. WebGeSTer DB—a transcription terminator database. Nucleic Acids Res. 2011; 39:D129-35.
  • [34]Gao H, Wang X, Yang ZK, Chen J, Liang Y, Chen H et al.. Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis. PLoS One. 2010; 5:e15295.
  • [35]Jansen C, Gronenborn AM, Clore GM. The binding of the cyclic AMP receptor protein to synthetic DNA sites containing permutations in the consensus sequence TGTGA. Biochem J. 1987; 246:227-32.
  • [36]Kolb A, Busby S, Buc H, Garges S, Adhya S. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem. 1993; 62:749-95.
  • [37]Hollands K, Busby SJW, Lloyd GS. New targets for the cyclic AMP receptor protein in the Escherichia coli K-12 genome. FEMS Microbiol Lett. 2007; 274:89-94.
  • [38]Wang H, Correa E, Dunn WB, Winder CL, Goodacre R, Lloyd JR. Metabolomic analyses show that electron donor and acceptor ratios control anaerobic electron transfer pathways in Shewanella oneidensis. Metabolomics. 2012; 9:642-56.
  • [39]Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985; 33:103-19.
  • [40]Penfold RJ, Pemberton JM. An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene. 1992; 118:145-6.
  • [41]Endoh T, Habe H, Yoshida T, Nojiri H, Omori T. A CysB-regulated and σ54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1. Microbiology. 2003; 149:991-1000.
  • [42]Brückner R, Titgemeyer F. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett. 2002; 209:141-8.
  • [43]Stülke J, Hillen W. Carbon catabolite repression in bacteria. Curr Opin Microbiol. 1999; 2:195-201.
  • [44]Murphy JN, Durbin KJ, Saltikov CW. Functional roles of arcA, etrA, cyclic AMP (cAMP)-cAMP receptor protein, and cya in the arsenate respiration pathway in Shewanella sp. strain ANA-3. J Bacteriol. 2009; 191:1035-43.
  • [45]Dong Y, Wang J, Fu H, Zhou G, Shi M, Gao H. A Crp-dependent two-component system regulates nitrate and nitrite respiration in Shewanella oneidensis. PLoS One. 2012; 7:e51643.
  • [46]Botsford JL, Harman JG. Cyclic AMP in prokaryotes. Microbiol Rev. 1992; 56:100-22.
  • [47]Rhodius VA, West DM, Webster CL, Busby SJ, Savery NJ. Transcription activation at class II CRP-dependent promoters: the role of different activating regions. Nucleic Acids Res. 1997; 25:326-32.
  • [48]Busby S, Ebright RH. Transcription activation at class II CAP-dependent promoters. Mol Microbiol. 1997; 23:853-9.
  • [49]Joung JK, Le LU, Hochschild A. Synergistic activation of transcription by Escherichia coli cAMP receptor protein. Proc Natl Acad Sci U S A. 1993; 90:3083-7.
  • [50]Tebbutt J, Rhodius VA, Webster CL, Busby SJW. Architectural requirements for optimal activation by tandem CRP molecules at a class I CRP-dependent promoter. FEMS Microbiol Lett. 2002; 210:55-60.
  • [51]Raibaud O, Schwartz M. Positive control of transcription initiation in bacteria. Annu Rev Genet. 1984; 18:173-206.
  • [52]Unden G, Duchene A. On the role of cyclic AMP and the Fnr protein in Escherichia coli growing anaerobically. Arch Microbiol. 1987; 147:195-200.
  • [53]Green J, Paget MS. Bacterial redox sensors. Nat Rev Microbiol. 2004; 2:954-66.
  • [54]Kristensen HH, Valentin-Hansen P, Søgaard-Andersen L. Design of CytR regulated, cAMP-CRP dependent class II promoters in Escherichia coli: RNA polymerase-promoter interactions modulate the efficiency of CytR repression. J Mol Biol. 1997; 266:866-76.
  • [55]Valentin-Hansen P, Søgaard-Andersen L, Pedersen H. A flexible partnership: the CytR anti-activator and the cAMP-CRP activator protein, comrades in transcription control. Mol Microbiol. 1996; 20:461-6.
  • [56]McLeod SM, Johnson RC. Control of transcription by nucleoid proteins. Curr Opin Microbiol. 2001; 4:152-9.
  • [57]Mukerji M, Mahadevan S. Characterization of the negative elements involved in silencing the bgl operon of Escherichia coli: possible roles for DNA gyrase, H-NS, and CRP-cAMP in regulation. Mol Microbiol. 1997; 24:617-27.
  • [58]Germer J, Becker G, Metzner M, Hengge-Aronis R. Role of activator site position and a distal UP-element half-site for sigma factor selectivity at a CRP/H-NS-activated σs-dependent promoter in Escherichia coli. Mol Microbiol. 2001; 41:705-16.
  • [59]Kouzuma A, Endoh T, Omori T, Nojiri H, Yamane H, Habe H. Transcription factors CysB and SfnR constitute the hierarchical regulatory system for the sulfate starvation response in Pseudomonas putida. J Bacteriol. 2008; 190:4521-31.
  • [60]Kouzuma A, Hashimoto K, Watanabe K. Roles of siderophore in manganese-oxide reduction by Shewanella oneidensis MR-1. FEMS Microbiol Lett. 2012; 326:91-8.
  • [61]Kouzuma A, Hashimoto K, Watanabe K. Influences of Aerobic respiration on current generation by Shewanella oneidensis MR-1 in single-chamber microbial fuel cells. Biosci Biotechnol Biochem. 2012; 76:270-5.
  • [62]Kouzuma A, Oba H, Tajima N, Hashimoto K, Watanabe K. Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression. BMC Microbiol. 2014; 14:190. BioMed Central Full Text
  • [63]Newton GJ, Mori S, Nakamura R, Hashimoto K, Watanabe K. Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells. Appl Environ Microbiol. 2009; 75:7674-81.
  • [64]Saltikov CW, Newman DK. Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci U S A. 2003; 100:10983-8.
  • [65]Kouzuma A, Meng X-Y, Kimura N, Hashimoto K, Watanabe K. Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl Environ Microbiol. 2010; 76:4151-7.
  • [66]Choi KH, Kumar A, Schweizer HP. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods. 2006; 64:391-7.
  • [67]Miller JH. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, New York; 1972.
  文献评价指标  
  下载次数:19次 浏览次数:22次